
1

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 1

Confidential–Internal Only

楚含进, Mar 2013

Heterogeneous System Architecture(HSA)

2

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 2

核数增加能够解决移动和低功耗与性能矛与盾吗？

Four Core

多核？

X86

X86

3

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 3 3

CPU

GPU

Audio

Processor

Video

Hardware

DSP

Image

Signal

Processing

Fixed

Function

Acctr

Encode

Decode
S

h
a
re

d
 M

e
m

o
ry

C
o
h
e
re

n
c
y,

 U
s
e
r

M
o
d
e

Q
u
e
u
e
s

GPU compute C++

support

User Mode Scheduling

Fully coherent memory

between CPU & GPU

GPU uses pageable

system memory via CPU

pointers

GPU graphics pre-

emption

GPU compute context

switch

 HSA ARCHITECTURE – 异构的本质：通用处理
器和专属处理器的博弈与融合

当CPU不再成为设计门槛

4

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 4

Heterogeneous

Systems

GOALS FOR THE HETEROGENEOUS SYSTEM

ARCHITECTURE – 异构系统不应增加编程的困难

DEVELOPER Easier to program

ENDUSER Rich Experiences

 DEVELOPER Improved

performance & power

OSV Improved quality of service

• Advanced Natural User Interfaces

& Presence Capabilities

• Rich Cloud Computing User

Experiences

• Perceptual Computing Experiences

• Bring Hollywood Class Realism to

Real-time Entertainment

5

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 5 5

CPU

GPU

Audio

Processor

Video

Hardware

DSP

Image

Signal

Processing

Fixed

Function

Acctr

Encode

Decode

S
h
a
re

d
 M

e
m

o
ry

C
o
h
e
re

n
c
y,

 U
s
e
r

M
o
d
e

Q
u
e
u
e
s

GPU compute C++

support

User Mode Scheduling

Fully coherent memory

between CPU & GPU

GPU uses pageable

system memory via

CPU pointers

GPU graphics pre-

emption

GPU compute context

switch

 HSA

ARCHITECTURE

新架构，新软件模型

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

6

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 6 © Copyright 2012 HSA Foundation. All

Rights Reserved.

6

Hardware - APUs, CPUs, GPUs

Driver Stack

Domain Libraries

OpenCL™ 1.x, DX Runtimes,

User Mode Drivers

Graphics Kernel Mode Driver

Apps
Apps

Apps
Apps

Apps
Apps

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

User mode component Kernel mode component Components contributed by third parties

7

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 7

HSA INTERMEDIATE LANGUAGE - HSAIL

Designed for C99, C++ 2011, Java,

Renderscript, OpenCL, C++ AMP

HSAIL is a virtual ISA for parallel

programs

 Finalized to ISA by a JIT compiler or

“Finalizer”

 ISA independent by design for CPU &

GPU

Explicitly parallel

 Designed for data parallel programming

Support for exceptions, virtual

functions,

and other high level language

features

Syscall methods

 GPU code can call directly to system

services, IO, printf, etc

7

8

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 8

OPENCL™ AND HSA

HSA is an optimized platform

architecture for OpenCL™

 Not an alternative to OpenCL™

OpenCL™ on HSA will benefit from

 Avoidance of wasteful copies

 Low latency dispatch

 Improved memory model

 Pointers shared between CPU and

GPU

HSA also exposes a lower level

programming interface, for those that

want the ultimate in control and

performance

 Optimized libraries may choose the

lower level interface

9

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 9 9

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

TODAY’S COMMAND AND DISPATCH FLOW

Hardware

Queue

A GPU

HARDWARE

C

B

A B

10

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 10 10

HSA COMMAND AND DISPATCH FLOW

Application

A

Application

B

Application

C

Optional Dispatch

Buffer

GPU

HARDWARE

Hardware Queue

A

A A

Hardware Queue

B

B B

Hardware Queue

C

C C

C

C

 No APIs

 No Soft Queues

 No User Mode Drivers

 No Kernel Mode Transitions

 No Overhead!

 Application codes to the

hardware

 User mode queuing

 Hardware scheduling

 Low dispatch times

11

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 11

GPU to D

D to CPU2 G to GPU

GPU to G

Click 6

CPU2 to F

F to GPU

App to E

E to GPU

B to CPU1

CPU1 to B

C to CPU2

A to CPU1

App to C

App to A

Application / Runtime

COMMAND AND DISPATCH CPU <-> GPU

B A F E D C G

CPU2 CPU1 GPU

Click 4

Click 5 Click 7 Click 8 Click 9

loop 1

Click 9

loop 2

Click 9

loop 3

12

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 12

HSA AND MOBILE: 异构与智能移动平台

Unifies the platform architecture for multiple

hardware vendors

 Avoid the need for unique ports for each vendor

High-performance and very power efficient

architecture creates a rich foundation for

compute intensive application

 Brings greater security to platform via privileged

memory support on the GPU and other co-processors

and the ability to preempt or kill process on GPU.

 GPU and Co-Processor now supported in a Unified

Coherent Memory with a consistent memory model.

 Zero data copy to device combined with very low

latency kernel dispatch.

 Support for safe process control of the GPU.

 Support for user mode queues that more closely maps

to android runtime

Improved debugging and performance analysis of

co-processors.

 12

13

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 13

HOW: 一个业界统一的开放标准

13

Founders

Promoters

Supporters

Contributors

Academic

Associates

University of Illinois

Computer Science

http://www.apical.co.uk/
http://www.multicorewareinc.com/index.php

14

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 14

RESEARCH TOPICS IN HSA

Category Description Comments

Languages/Compilers Higher-level languages. GPU languages are primitive today. OpenCL

is a good expert tool. Look into domain specific languages (graphics,

math). Ex: HSA could have a database accelerator component

Split compilation model – high level compliers & low level compilers

and how to make them work well together

How to run best on a device with multi ISA’s

Software Run-Time Classic load balancing. Look for new ways to partition algorithms

automatically in the runtime. Simultaneous running of multiple kernels

or multiple applications. Quality of service & virtualization. Scheduling

for complex status graphs and scheduling dynamic parallelism

System Architecture • Bandwidth/memory arch (balancing BW with compute)

• Load balancing

• Memory configurations: Stack memory devices will eventually

appear and systems will change around idea of bandwidth. Shared

memory stacks – what are the implications?

• TCU/LCU ratios

Hardware Logical split between split function hardware.

• Applying HSA to non-GPU devices (DSPs, FPGAs, etc.)

• Heterogeneous conformance optimization - how to run a program

that runs well on all different HSA platforms and hardware

Memory system design: low cost support for coherency and would give

programmers a way to optimize their use of coherence

Security: looking into securing systems

Efficient synchronization primitives

3D graphics pipes – integration with HSA

15

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 15

SOLUTION

PROBLEM

THE HSA OPPORTUNITY

Developer

Return
(Differentiation in

performance,

reduced power,

features,

time to market)

Developer Investment
(Effort, time, new skills)

Good user
experiences

 Historically, developers program CPUs

 HSA + Libraries =
productivity & performance with low power

Wide range of
differentiated
experiences

~4M
apps

20+M*
CPU

coders

PROBLEM

Significant
niche
value

 Het. systems hard to program

 Not all workloads accelerate

~200
apps

~100K
GPU

coders

Few
100Ks
HSA
apps

Few M
HSA

coders

*IDC

16

GPU Saturday Dec 2013 3| Non-Disclosure | Sponsored by AMD 16

Confidential–Internal Only

技术是交流和进步的一种方式

