
HSA Programmer’s Reference Manual: HSAIL
Virtual ISA and Programming Model,

Compiler Writer’s Guide, and Object Format
(BRIG)

  HSA Foundation Proprietary  
   

  Publication #: 49828 ∙ Rev: Version 0.95  ∙ Issue Date: 1 May 2013  

   

© 2013 HSA Foundation. All rights reserved.

The contents of this document are provided in connection with the HSA Foundation specifications. This
specification is protected by copyright laws and contains material proprietary to the HSA Foundation. It or any
components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise
exploited in any manner without the express prior written permission of HSA Foundation. You may use this
specification for implementing the functionality therein, without altering or removing any trademark,
copyright or other notice from the specification, but the receipt or possession of this specification does not
convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that
it may describe, in whole or in part.
HSA Foundation grants express permission to any current Founder, Promoter, Supporter Contributor,
Academic or Associate member of HSA Foundation to copy and redistribute UNMODIFIED versions of this
specification in any fashion, provided that NO CHARGE is made for the specification and the latest available
update of the specification for any version of the API is used whenever possible. Such distributed specification
may be re-formatted AS LONG AS the contents of the specification are not changed in any way. The specification
may be incorporated into a product that is sold as long as such product includes significant independent work
developed by the seller. A link to the current version of this specification on the HSA Foundation web-site should
be included whenever possible with specification distributions.
HSA Foundation makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this specification, including, without limitation, any implied warranties of merchantability or fitness
for a particular purpose or non-infringement of any intellectual property. HSA Foundation makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness, accuracy, completeness,
timeliness, and reliability of the specification. Under no circumstances will the HSA Foundation, or any of its
Founders, Promoters, Supporters, Academic, Contributors, and Associates members or their respective
partners, officers, directors, employees, agents or representatives be liable for any damages, whether direct,
indirect, special or consequential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

ii  

Acknowledgements
The HSAIL specification is the result of the contributions of many people. Here is a
partial list of the contributors, including the company that they represented at the time
of their contribution:

• Paul Blinzer AMD

• Mark Fowler AMD

• Mike Houston AMD

• Lee Howes AMD

• Roy Ju AMD

• Bill Licea-Kane AMD

• Leonid Lobachev AMD

• Mike Mantor AMD

• Vicki Meagher AMD

• Dmitry Preobrazhensky AMD

• Phil Rogers AMD

• Norm Rubin AMD

• Benjamin Sander AMD

• Elizabeth Sanville AMD

• Oleg Semenov AMD

• Brian Sumner AMD

• Yaki Tebeka AMD

• Tony Tye AMD

• Micah Villmow AMD

• Jem Davies ARM

• Ian Devereux ARM

• Robert Elliott ARM

• Alexander Galazin ARM

• Rune Holm ARM

• Kurt Shuler Arteris

• Greg Stoner HSA Foundation

• Theo Drane Imagination Technologies

• Yoong-Chert Foo Imagination Technologies

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Acknowledgements iii

• John Howson Imagination Technologies

• Georg Kolling Imagination Technologies

• James McCarthy Imagination Technologies

• Jason Meridith Imagination Technologies

• Mark Rankilor Imagination Technologies

• Chien-Ping Lu MediaTek Inc.

• Thomas Jablin MulticoreWare Inc.

• Chuang Na MulticoreWare Inc.

• Greg Bellows Qualcomm

• P.J. Bostley Qualcomm

• Alex Bourd Qualcomm

• Ken Dockser Qualcomm

• Jamie Esliger Qualcomm

• Ben Gaster Qualcomm

• Andrew Gruber Qualcomm

• Wilson Kwan Qualcomm

• Bob Rychlik Qualcomm

• Ignacio Llamas Samsung Electronics Co, Ltd

• Soojung Ryu Samsung Electronics Co, Ltd

• Matthew Locke Texas Instruments

• Chelsi Odegaard VTM Group

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

iv Acknowledgements  

About the HSA Programmer's Reference
Manual

This document describes the Heterogeneous System Architecture Intermediate
Language (HSAIL), which is a virtual machine and an intermediate language.

This document serves as the specification for the HSAIL language for HSA
implementers. Note that there are a wide variety of methods for implementing these
requirements.

Audience
This document is written for developers involved in developing an HSA
implementation.

Terminology
This document shows new terms in italics. See Appendix C Glossary of HSAIL Terms
(p. 327) for their definitions.

HSA Information Sources
• HSA Programmer's Reference Manual - publication # 49828

• HSA Software System Architecture Specification - publication # 51958

• HSA Hardware System Architecture Specification - publication # 50830

• The OpenCL™ Specification: http://www.khronos.org/registry/cl/specs/
opencl-1.2.pdf

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  About the HSA Programmer's Reference Manual v

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

vi About the HSA Programmer's Reference Manual  

Contents

Chapter 1 Overview . 1
1.1 What Is HSAIL? . 1

1.2 HSAIL Virtual Language . 2

Chapter 2 HSAIL Programming Model . 5
2.1 Overview of Grids, Work-Groups, and Work-Items . 5

2.2 Work-Groups .7

2.2.1 Work-Group ID . 7

2.2.2 Work-Group Flattened ID . 8

2.3 Work-Items . 8

2.3.1 Work-Item ID . 8

2.3.2 Work-Item Flattened ID . 9

2.3.3 Work-Item Absolute ID .9

2.3.4 Work-Item Flattened Absolute ID .9

2.4 Scalable Data-Parallel Computing . 10

2.5 Active Work-Groups and Active Work-Items . 10

2.6 Wavefronts, Lanes, and Wavefront Sizes .11

2.6.1 Example of Contents of a Wavefront . 11

2.6.2 Wavefront Size . 12

2.7 Types of Memory . 13

2.8 Segments . 13

2.8.1 Types of Segments . 14

2.8.2 Shared Virtual Memory .16

2.8.3 Addressing for Segments . 17

2.9 Flat Memory and Agents . 18

2.9.1 Persistence Rules . 19

2.10 Small and Large Machine Models . 20

2.11 Base and Full Profiles .21

2.12 Race Conditions . 21

2.13 Divergent Control Flow . 21

2.13.1 Width Modifier . 22

2.13.2 Post-Dominator and Immediate Post-Dominator .23

2.14 Uniform Operations .23

Chapter 3 Examples of HSAIL Programs . 25

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  vii

3.1 Vector Add Translated to HSAIL . 25

3.2 Transpose Translated to HSAIL . 26

Chapter 4 HSAIL Syntax and Semantics .29
4.1 Two Formats . 29

4.2 Source Format . 29

4.3 Code Blocks . 30

4.4 Body Statements . 31

4.5 Top-Level Statements . 31

4.5.1 Directive .32

4.5.2 Comment .32

4.5.3 Global Declaration . 33

4.5.4 Kernel .33

4.5.6 Function . 33

4.6 Operations .34

4.7 Strings .35

4.8 Identifiers .36

4.8.1 Syntax .36

4.8.2 Scope . 37

4.9 Argument Scope . 38

4.10 Storage Duration .38

4.11 Rounding Modes . 39

4.12 Registers . 40

4.13 Constants .41

4.13.1 Integer Constants . 41

4.13.2 Floating-Point Constants . 42

4.13.3 Packed Constants .45

4.13.4 How Text Format Constants Are Converted to Bit String Constants . 45

4.14 Data Types . 46

4.14.1 Base Data Types . 46

4.14.2 Packed Data . 46

4.14.3 Opaque Data Types .47

4.15 Packing Controls for Packed Data . 47

4.15.1 Ranges .48

4.15.2 Packed Constants .49

4.15.3 Examples . 49

4.16 Subword Sizes . 50

4.17 Operands .50

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

viii  

4.17.1 Operand Compound Type . 50

4.17.2 Rules for Source Operand Registers . 51

4.17.3 Rules for Destination Operand Registers . 52

4.18 Address Expressions . 52

4.19 Vector Operands . 53

4.20 Labels . 54

4.21 Floating-Point Numbers . 54

4.22 Declaring and Defining Identifiers . 55

4.22.1 Array Declarations .58

4.23 Linkage: External, Static, and None .59

4.23.1 External Linkage . 60

4.23.2 Static Linkage . 60

4.23.3 None Linkage . 61

4.24 Dynamic Group Memory Allocation .61

4.25 Kernarg Segment .62

Chapter 5 Arithmetic Operations . 65
5.1 Overview of Arithmetic Operations . 65

5.2 Integer Arithmetic Operations . 65

5.2.1 Syntax .66

5.2.2 Description .67

5.3 Integer Optimization Operation . 71

5.3.1 Syntax .71

5.3.2 Description .72

5.4 24-Bit Integer Optimization Operations . 72

5.4.1 Syntax .72

5.4.2 Description .73

5.5 Integer Shift Operations . 74

5.5.1 Syntax .74

5.5.2 Description for Standard Form . 75

5.5.3 Description for Packed Form . 75

5.6 Individual Bit Operations . 76

5.6.1 Syntax .76

5.6.2 Description .77

5.7 Bit String Operations .78

5.7.1 Syntax .78

5.7.2 Description .79

5.8 Copy (Move) Operations .83

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  ix

5.8.1 Syntax .83

5.8.2 Description .84

5.8.3 Additional Information About lda . 85

5.9 Packed Data Operations . 85

5.9.1 Syntax .86

5.9.2 Description .87

5.9.3 Controls in src2 for shuffle Operation . 89

5.9.4 Common Uses for shuffle Operation .90

5.9.5 Examples of unpacklo and unpackhi Operations . 92

5.10 Bit Conditional Move (cmov) Operation . 93

5.10.1 Syntax .93

5.10.2 Description .94

5.11 Floating-Point Arithmetic Operations . 95

5.11.1 Overview .95

5.11.2 Syntax .96

5.11.3 Description .98

5.12 Floating-Point Classify (class) Operation . 101

5.12.1 Syntax .101

5.12.2 Description .102

5.13 Floating-Point Native Functions Operations . 103

5.13.1 Syntax .103

5.13.2 Description .104

5.14 Multimedia Operations . 105

5.14.1 Syntax .105

5.14.2 Description .106

5.15 Segment Checking (segmentp) Operation . 108

5.15.1 Syntax .109

5.15.2 Description .109

5.16 Segment Conversion Operations . 110

5.16.1 Syntax .110

5.16.2 Description .111

5.17 Compare (cmp) Operation . 111

5.17.1 Syntax .112

5.17.2 Description for cmp Operation . 113

5.18 Conversion (cvt) Operation . 114

5.18.1 Overview .114

5.18.2 Syntax .116

5.18.3 Rules for Rounding for Conversions . 117

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

x  

5.18.4 Description of Integer Rounding Modes .118

5.18.5 Description of Floating-Point Rounding Modes .119

Chapter 6 Memory Operations . 121
6.1 Memory and Addressing . 121

6.1.1 How Addresses Are Formed .121

6.1.2 Memory Hierarchy . 122

6.1.3 Alignment .123

6.1.4 Equivalence Classes .124

6.2 Load (ld) Operation . 124

6.2.1 Syntax .124

6.2.2 Description .125

6.2.3 Additional Information .127

6.3 Store (st) Operation . 128

6.3.1 Syntax .129

6.3.2 Description .130

6.3.3 Additional Information .131

6.4 Atomic Operations: atomic and atomicnoret . 133

6.5 Atomic (atomic) Operations . 134

6.5.1 Syntax .134

6.5.2 Description of Atomic and Atomic No Return Operations . 135

6.6 Atomic No Return (atomicnoret) Operations . 138

6.6.1 Syntax .139

6.6.2 Description .140

6.7 Examples of Memory Operations . 141

6.7.1 Examples Without Synchronization . 141

6.7.2 Examples Where Reusing an Address Forces Order . 142

6.7.3 Examples With One-Sided Synchronization .143

6.7.4 Examples With Two-Sided Synchronization .144

Chapter 7 Image Operations . 147
7.1 Images in HSAIL . 147

7.1.1 What Are Images? .147

7.1.2 How Images Are Described . 148

7.1.3 Image Geometry . 149

7.1.4 Image Objects . 150

7.1.5 How Images Are Accessed .153

7.1.6 Bits Per Pixel (bpp) .154

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  xi

7.1.7 Sampler Objects . 156

7.1.8 Rules to Process Coordinates . 157

7.1.9 Image Boundary Modes . 157

7.1.10 Image Formats and Output Types . 158

7.2 Read Image (rdimage) Operation . 159

7.2.1 Syntax .159

7.2.2 Description .160

7.3 Load Image (ldimage) Operation .161

7.3.1 Syntax .161

7.3.2 Description .162

7.4 Store Image (stimage) Operation . 163

7.4.1 Syntax .163

7.4.2 Description .164

7.5 Atomic Image (atomicimage) Operations . 165

7.5.1 Syntax .165

7.5.2 Description .166

7.6 Atomic Image No Return (atomicimagenoret) Operations . 167

7.6.1 Syntax .167

7.6.2 Description .168

7.7 Query Image and Query Sampler Operations . 169

7.7.1 Syntax .169

7.7.2 Description .170

Chapter 8 Branch Operations . 171
8.1 Branches in HSAIL . 171

8.1.1 Direct Branches . 171

8.1.2 Indirect Branches .172

8.2 Direct and Indirect Branch Operations . 173

8.2.1 Syntax .173

8.2.2 Description .175

8.3 Using the Width Modifier . 175

8.4 Label Targets (labeltargets Statement) .176

Chapter 9 Parallel Synchronization and Communication Operations 179
9.1 Memory Fence Modifier . 179

9.2 barrier Operation . 180

9.2.1 Syntax .181

9.2.2 Description .181

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

xii  

9.3 Fine-Grain Barrier (fbar) Operations .182

9.3.1 Overview: What Is an Fbarrier? .182

9.3.2 Syntax .183

9.3.3 Description .184

9.3.4 Additional Information About Fbarrier Operations . 187

9.3.5 Pseudocode Examples . 188

9.4 Synchronization (sync) Operation . 192

9.4.1 Syntax .192

9.4.2 Description .193

9.5 Cross-Lane Operations .193

9.5.1 Syntax .193

9.5.2 Description .194

Chapter 10 Functions . 197
10.1 Functions in HSAIL . 197

10.1.1 Example of a Simple Function .197

10.1.2 Example of a More Complex Function . 197

10.1.3 Function Pointers .198

10.1.4 Functions That Do Not Return a Result . 198

10.2 Argument Passing Rules . 198

10.3 Function Declarations, Function Definitions, and Function Signatures . 199

10.3.1 Function Declaration . 199

10.3.2 Function Definition .199

10.3.3 Function Signature .200

10.4 Arg Segment . 200

10.5 Variadic Functions . 202

10.5.1 Example of a Variadic Function . 202

10.6 align Field .202

Chapter 11 Operations Related to Functions .205
11.1 call Operation . 205

11.1.1 Syntax .205

11.1.2 Description .206

11.2 Return (ret) Operation . 207

11.2.1 Syntax .207

11.2.2 Description .208

11.3 System Call (syscall) Operation . 208

11.3.1 Syntax .208

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  xiii

11.3.2 Description .209

11.4 Allocate Memory (alloca) Operation . 209

11.4.1 Syntax .210

11.4.2 Description .210

Chapter 12 Special Operations . 211
12.1 Syntax .211

12.2 Description .212

12.3 Additional Information on DETECT Exception Operations . 216

Chapter 13 Exceptions .219
13.1 Kinds of Exceptions .219

13.2 Hardware Exceptions . 219

13.3 Hardware Exception Policies . 221

Chapter 14 Directives . 225
14.1 extension Directive . 225

14.1.1 How to Set Up Finalizer Extensions . 225

14.2 Block Section Directives for Debugging and Runtime Information . 226

14.2.1 Syntax for a Block Section . 226

14.2.2 Example of a Block Section for Debug Data .227

14.2.3 Using a Block Section for Runtime Information .227

14.2.4 Example of a Block Section for Runtime Data . 227

14.3 file Directive . 228

14.4 loc Directive . 228

14.5 pragma Directive . 229

14.6 Control Directives for Low-Level Performance Tuning . 229

Chapter 15 version Statement . 237
15.1 Syntax of the version Statement . 237

Chapter 16 Libraries . 239
16.1 Library Restrictions . 239

16.2 Library Example . 239

Chapter 17 Profiles . 241
17.1 What Are Profiles? . 241

17.2 Profile-Specific Requirements . 242

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

xiv  

17.2.1 Full Profile Requirements .242

17.2.2 Base Profile Requirements . 243

Chapter 18 Guidelines for Compiler Writers .245
18.1 Register Pressure . 245

18.2 Using Lower-Precision Faster Operations .245

18.3 Functions .245

18.4 Frequent Rounding Mode Changes . 246

18.5 Wavefront Size . 246

18.6 Unaligned Access . 247

18.7 When to Use Flat Addressing . 247

18.8 Arg Arguments . 247

18.9 Exceptions . 247

Chapter 19 BRIG: HSAIL Binary Format . 249
19.1 What Is BRIG? . 249

19.1.1 BRIG Sections .249

19.1.2 Format of Entries in the Sections . 250

19.2 Support Types .251

19.2.1 Section Offsets .251

19.2.2 Section Structure Kinds . 251

19.2.3 BrigAluModifierMask .252

19.2.4 BrigAtomicOperation .252

19.2.5 BrigCompareOperation .253

19.2.6 BrigControlDirective .253

19.2.7 BrigExecutableModifierMask . 254

19.2.8 BrigImageFormat . 254

19.2.9 BrigImageGeometry .255

19.2.10 BrigImageOrder . 255

19.2.11 BrigLinkage .255

19.2.12 BrigMachineModel . 256

19.2.13 BrigMemoryFence . 256

19.2.14 BrigMemoryModifierMask . 256

19.2.15 BrigMemorySemantic . 257

19.2.16 BrigOpcode . 257

19.2.17 BrigPack . 260

19.2.18 BrigProfile .260

19.2.19 BrigRound . 260

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  xv

19.2.20 BrigSamplerBoundaryMode . 261

19.2.21 BrigSamplerCoord . 261

19.2.22 BrigSamplerFilter . 261

19.2.23 BrigSamplerModifierMask .261

19.2.24 BrigSegment . 262

19.2.25 BrigSymbolModifierMask .262

19.2.26 BrigType . 263

19.2.27 BrigVersion .265

19.2.28 BrigWidth . 265

19.3 Section Header . 266

19.4 .string Section . 266

19.5 Block Sections in BRIG . 267

19.5.1 Overview .267

19.5.2 BrigBlockEnd . 268

19.5.3 BrigBlockNumeric . 268

19.5.4 BrigBlockStart . 269

19.5.5 BrigBlockString . 269

19.6 .directive Section . 270

19.6.1 Overview .270

19.6.2 Declarations and Definitions in the Same Compilation Unit . 271

19.6.3 BrigDirectiveBase . 271

19.6.4 BrigDirectiveCallableBase . 272

19.6.5 BrigDirectiveArgScope .272

19.6.6 BrigDirectiveComment . 273

19.6.7 BrigDirectiveControl .273

19.6.8 BrigDirectiveExecutable .274

19.6.9 BrigDirectiveExtension .275

19.6.10 BrigDirectiveFbarrier . 276

19.6.11 BrigDirectiveFile .276

19.6.12 BrigDirectiveImageInit . 277

19.6.13 BrigDirectiveLabel . 278

19.6.14 BrigDirectiveLabelList .278

19.6.15 BrigDirectiveLoc .279

19.6.16 BrigDirectivePragma .279

19.6.17 BrigDirectiveSamplerInit .280

19.6.18 BrigDirectiveSignature . 281

19.6.19 BrigDirectiveSymbol .282

19.6.20 BrigDirectiveVariableInit . 283

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

xvi  

19.6.21 BrigDirectiveVersion .284

19.7 .code Section .285

19.7.1 Overview .285

19.7.2 BrigInstBase . 286

19.7.3 BrigInstBasic . 286

19.7.4 BrigInstAddr .287

19.7.5 BrigInstAtomic . 287

19.7.6 BrigInstAtomicImage .288

19.7.7 BrigInstBar . 289

19.7.8 BrigInstBr .289

19.7.9 BrigInstCmp .290

19.7.10 BrigInstCvt . 291

19.7.11 BrigInstFbar . 291

19.7.12 BrigInstImage .292

19.7.13 BrigInstMem . 293

19.7.14 BrigInstMod . 293

19.7.15 BrigInstNone .294

19.7.16 BrigInstSeg .295

19.7.17 BrigInstSourceType . 295

19.8 .operand Section .296

19.8.1 Overview .296

19.8.2 BrigOperandBase .296

19.8.3 BrigOperandAddress .297

19.8.4 BrigOperandImmed . 298

19.8.5 BrigOperandList .298

19.8.6 BrigOperandRef .299

19.8.7 BrigOperandReg . 300

19.8.8 BrigOperandRegVector .300

19.8.9 BrigOperandWavesize .300

19.9 .debug Section .301

19.10 BRIG Syntax for Operations . 301

19.10.1 BRIG Syntax for Arithmetic Operations .301

19.10.1.1 BRIG Syntax for Integer Arithmetic Operations . 301

19.10.1.2 BRIG Syntax for Integer Optimization Operation . 302

19.10.1.3 BRIG Syntax for 24-Bit Integer Optimization Operations . 302

19.10.1.4 BRIG Syntax for Integer Shift Operations .302

19.10.1.5 BRIG Syntax for Individual Bit Operations . 303

19.10.1.6 BRIG Syntax for Bit String Operations . 303

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  xvii

19.10.1.7 BRIG Syntax for Copy (Move) Operations . 303

19.10.1.8 BRIG Syntax for Packed Data Operations . 304

19.10.1.9 BRIG Syntax for Bit Conditional Move (cmov) Operation .304

19.10.1.10 BRIG Syntax for Floating-Point Arithmetic Operations . 305

19.10.1.11 BRIG Syntax for Floating-Point Classify (class) Operation .306

19.10.1.12 BRIG Syntax for Floating-Point Native Functions Operations . 306

19.10.1.13 BRIG Syntax for Multimedia Operations . 307

19.10.1.14 BRIG Syntax for Segment Checking (segmentp) Operation .307

19.10.1.15 BRIG Syntax for Segment Conversion Operations . 307

19.10.1.16 BRIG Syntax for Compare (cmp) Operation . 307

19.10.1.17 BRIG Syntax for Conversion (cvt) Operation . 308

19.10.2 BRIG Syntax for Memory Operations . 308

19.10.3 BRIG Syntax for Image Operations .309

19.10.4 BRIG Syntax for Branch Operations . 309

19.10.5 BRIG Syntax for Parallel Synchronization and Communication Operations . 310

19.10.6 BRIG Syntax for Operations Related to Functions . 311

19.10.7 BRIG Syntax for Special Operations .311

Appendix A HSAIL Grammar in Extended Backus-Naur Form (EBNF)313

Appendix B Limits . 325

Appendix C Glossary of HSAIL Terms . 327

Index . 331

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

xviii  

Figures

Chapter 2 HSAIL Programming Model
Figure 2–1 A Grid and Its Work-Groups and Work-Items . 5

Chapter 4 HSAIL Syntax and Semantics
Figure 4–1 Program Syntax Diagram .30

Figure 4–2 version Statement . 30

Figure 4–3 Top-Level Statements . 30

Figure 4–4 Code Block . 30

Figure 4–5 Code Block End .31

Figure 4–6 Body Statement Syntax Diagram . 31

Figure 4–7 Top-Level Statement Syntax Diagram . 32

Figure 4–8 Directive Syntax Diagram . 32

Figure 4–9 Global Declaration Syntax Diagram . 33

Figure 4–10 Kernel Syntax Diagram . 33

Figure 4–11 Function Definition Syntax Diagram . 34

Figure 4–12 declprefix Syntax Diagram . 34

Figure 4–13 Identifier Syntax Diagram . 36

Figure 4–14 Name Syntax Diagram . 36

Figure 4–15 Constant Syntax Diagram . 41

Figure 4–16 Integer Constant Syntax Diagram .42

Figure 4–17 Octal Constant Syntax Diagram .42

Figure 4–18 Hex Constant Syntax Diagram .42

Figure 4–19 Floating-Point Single Constant Syntax Diagram . 43

Figure 4–20 Floating-Point Double Constant Syntax Diagram . 44

Figure 4–21 hexFloatConstant Syntax Diagram . 44

Figure 4–22 hexFrac Syntax Diagram . 44

Figure 4–23 hexExp Syntax Diagram .44

Figure 4–24 hexSequence Syntax Diagram . 45

Figure 4–25 Initializable Declaration or Definition Syntax Diagram . 55

Figure 4–26 Uninitializable Declaration or Definition Syntax Diagram .55

Chapter 5 Arithmetic Operations
Figure 5–1 Example of Broadcast . 91

Figure 5–2 Example of Rotate . 91

Figure 5–3 Example of Unpack . 92

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  xix

Chapter 6 Memory Operations
Figure 6–1 Memory Hierarchy . 123

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

xx  

Tables

Chapter 2 HSAIL Programming Model
Table 2–1 Wavefronts 0 Through 6 .11

Table 2–2 Flat Memory and Agents .18

Table 2–3 Machine Model Address Sizes . 20

Chapter 4 HSAIL Syntax and Semantics
Table 4–1 Text Constants and Results of the Conversion .45

Table 4–2 Base Data Types .46

Table 4–3 Packed Data Types and Possible Lengths . 47

Table 4–4 Opaque Data Types . 47

Table 4–5 Packing Controls for Operations With One Source Input . 48

Table 4–6 Packing Controls for Operations With Two Source Inputs . 48

Chapter 5 Arithmetic Operations
Table 5–1 Syntax for Integer Arithmetic Operations . 66

Table 5–2 Syntax for Packed Versions of Integer Arithmetic Operations . 66

Table 5–3 Syntax for Integer Optimization Operation . 71

Table 5–4 Syntax for 24-Bit Integer Optimization Operations . 72

Table 5–5 Syntax for Integer Shift Operations . 74

Table 5–6 Syntax for Individual Bit Operations . 76

Table 5–7 Inputs and Results for popcount Operation .78

Table 5–8 Syntax for Bit String Operations . 78

Table 5–9 Inputs and Results for firstbit and lastbit Operations . 82

Table 5–10 Syntax for Copy (Move) Operations . 83

Table 5–11 Syntax for Shuffle and Interleave Operations . 86

Table 5–12 Syntax for Pack and Unpack Operations . 86

Table 5–13 Bit Selectors for shuffle Operation . 89

Table 5–14 Syntax for Bit Conditional Move (cmov) Operation . 93

Table 5–15 Syntax for Floating-Point Arithmetic Operations . 96

Table 5–16 Syntax for Packed Versions of Floating-Point Arithmetic Operations97

Table 5–17 Syntax for Floating-Point Classify (class) Operation . 101

Table 5–18 Conditions and Source Bits .102

Table 5–19 Syntax for Floating-Point Native Functions Operations . 103

Table 5–20 Syntax for Multimedia Operations . 105

Table 5–21 Syntax for Segment Checking (segmentp) Operation .109

Table 5–22 Syntax for Segment Conversion Operations . 110

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  xxi

Table 5–23 Syntax for Compare (cmp) Operation . 112

Table 5–24 Syntax for Packed Version of Compare (cmp) Operation . 112

Table 5–25 Conversion Methods . 115

Table 5–26 Notation for Conversion Methods .116

Table 5–27 Syntax for Conversion (cvt) Operation . 116

Table 5–28 Rules for Rounding for Conversions . 117

Chapter 6 Memory Operations
Table 6–1 Syntax for Load (ld) Operation . 124

Table 6–2 Syntax for Store (st) Operation . 129

Table 6–3 Syntax for Atomic Operations .134

Table 6–4 Syntax for Atomic No Return Operations . 139

Chapter 7 Image Operations
Table 7–1 Enumeration for Image Format Properties . 152

Table 7–2 Enumeration for Image Order Properties .152

Table 7–3 Supported Image Orders and Image Formats . 155

Table 7–4 Image Channel Order and Border Color . 158

Table 7–5 Image Formats and Output Types . 158

Table 7–6 Syntax for Read Image Operation . 159

Table 7–7 Syntax for Load Image Operation . 161

Table 7–8 Syntax for Store Image Operation . 163

Table 7–9 Syntax for Atomic Image Operations . 165

Table 7–10 Syntax for Atomic Image No Return Operations . 167

Table 7–11 Syntax for Query Image and Query Sampler Operations . 169

Chapter 8 Branch Operations
Table 8–1 Syntax for Unconditional Direct Branch Operation . 173

Table 8–2 Syntax for Conditional Direct Branch Operation . 174

Table 8–3 Syntax for Unconditional Indirect Branch Operation . 174

Table 8–4 Syntax for Conditional Indirect Branch Operation . 174

Chapter 9 Parallel Synchronization and Communication Operations
Table 9–1 Syntax for barrier Operation . 181

Table 9–2 Syntax for fbar Operations . 183

Table 9–3 Syntax for sync Operation . 192

Table 9–4 Syntax for Cross-Lane Operations .193

Chapter 11 Operations Related to Functions
Table 11–1 Syntax for call Operation . 205

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

xxii  

Table 11–2 Syntax for ret Operation . 207

Table 11–3 Syntax for System Call (syscall) Operation . 208

Table 11–4 Syntax for Allocate Memory (alloca) Operation . 210

Chapter 12 Special Operations
Table 12–1 Syntax for Special Operations .211

Chapter 14 Directives
Table 14–1 Control Directives for Low-Level Performance Tuning . 229

Chapter 19 BRIG: HSAIL Binary Format
Table 19–1 Block Section Structures . 268

Table 19–2 Structures in the .directive Section . 270

Table 19–3 Formats of Operations in the .code Section . 285

Table 19–4 Structures in the .operand Section . 296

Table 19–5 BRIG Syntax for Integer Arithmetic Operations .301

Table 19–6 BRIG Syntax for Integer Optimization Operation . 302

Table 19–7 BRIG Syntax for 24-Bit Integer Optimization Operations . 302

Table 19–8 BRIG Syntax for Integer Optimization Operation . 302

Table 19–9 BRIG Syntax for Individual Bit Operations . 303

Table 19–10 BRIG Syntax for Bit String Operations .303

Table 19–11 BRIG Syntax for Copy (Move) Operations .303

Table 19–12 BRIG Syntax for Packed Data Operations . 304

Table 19–13 BRIG Syntax for Bit Conditional Move (cmov) Operation . 304

Table 19–14 BRIG Syntax for Floating-Point Arithmetic Operations . 305

Table 19–15 BRIG Syntax for Floating-Point Classify (class) Operation . 306

Table 19–16 BRIG Syntax for Floating-Point Native Functions Operations 306

Table 19–17 BRIG Syntax for Multimedia Operations .307

Table 19–18 BRIG Syntax for Segment Checking (segmentp) Operation . 307

Table 19–19 BRIG Syntax for Segment Conversion Operations .307

Table 19–20 BRIG Syntax for Compare (cmp) Operation . 307

Table 19–21 BRIG Syntax for Conversion (cvt) Operation .308

Table 19–22 BRIG Syntax for Memory Operations . 308

Table 19–23 BRIG Syntax for Image Operations . 309

Table 19–24 BRIG Syntax for Branch Operations . 310

Table 19–25 BRIG Syntax for Parallel Synchronization and Communication Operations 310

Table 19–26 BRIG Syntax for Operations Related to Functions . 311

Table 19–27 BRIG Syntax for Special Operations . 311

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  xxiii

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

xxiv  

Chapter 1

Overview
This chapter provides an overview of Heterogeneous System Architecture
Intermediate Language (HSAIL).

1.1 What Is HSAIL?
The Heterogeneous System Architecture (HSA) is designed to efficiently support a
wide assortment of data-parallel and task-parallel programing models. A single HSA
system can support multiple instruction sets based on CPU(s), GPU(s), and specialized
processor(s).

HSA supports two machine models: large mode (64-bit address space) and small mode
(32-bit address space).

Programmers normally build code for HSA in a virtual machine and intermediate
language called HSAIL (Heterogeneous System Architecture Intermediate Language).
Using HSAIL allows a single program to execute on a wide range of platforms, because
the native instruction set has been abstracted away.

HSAIL is required for parallel computing on an HSA platform.

This manual describes the HSAIL virtual machine and the HSAIL intermediate
language.

An HSA implementation consists of:

• Hardware components that execute one or more machine instruction set
architectures (ISAs). Supporting multiple ISAs is a key component of HSA.

• A compiler, linker, and loader.

• A finalizer that translates HSAIL code into the appropriate native ISA if the
hardware components cannot support HSAIL natively.

• A runtime system.

Each implementation is able to execute the same HSAIL virtual machine and language,
though different implementations might run at different speeds.

A device that participates in the HSA memory model is called an agent.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Overview 1

An HSAIL virtual machine consists of multiple agents including at least one host CPU
and one HSA component:

• A host CPU is an agent that also supports the native CPU instruction set and runs
the host operating system and the HSA runtime. As an agent, the host CPU can
dispatch commands to an HSA component using memory operations to
construct and enqueue AQL packets. In some systems, a host CPU can also act as
an HSA component (with appropriate HSAIL finalizer and AQL mechanisms).

• An HSA component is an agent that supports the HSAIL instruction set and the
AQL packet format. As an agent, an HSA component can dispatch commands to
any HSA component (including itself) using memory operations to construct and
enqueue AQL packets.

Neither kind of compute unit needs to execute HSAIL code directly.

Different implementations can choose to invoke the finalizer at various times:
statically at the same time the application is built, when the application is installed,
when it is loaded, or even during execution.

An HSA-enabled application is an amalgam of both of the following:

• Code that can execute only on host CPUs

• HSAIL code, which can execute only on HSA components

Certain sections of code, called kernels, are executed in a data-parallel way by HSA
components. Kernels are written in HSAIL and then separately translated (statically,
at install time, at load time, or dynamically) by a finalizer to the target instruction set.

A kernel does not return a value.

HSAIL supports two machine models:

• Large mode (addresses are 64 bits)

• Small mode (addresses are 32 bits)

For more information, see 2.10 Small and Large Machine Models (p. 20).

1.2 HSAIL Virtual Language
HSAIL is a virtual instruction set designed for parallel processing which can be
translated on-the-fly into many native instruction sets. Internally, each
implementation of HSA might be quite different, yet all implementations will run any
program written in HSAIL, provided it supports the profile used. See
Chapter 17 Profiles (p. 241). HSAIL has no explicit parallel constructs; instead, each
kernel contains operations for a single work-item.

When the kernel starts, a multidimensional cube-shaped grid is defined and one work-
item is launched for each point in the grid. A typical grid will be large, so a single kernel
might launch thousands of work-items. Each launched work-item executes the same
kernel code, but might take different control flow paths. Execution of the kernel is
complete when all work-items of the grid have been launched and have completed
their execution.

Work-items are extremely lightweight, meaning that the overhead of context
switching among work-items is not a costly operation.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

2 Overview  

An HSAIL program looks like a simple assembly language program for a RISC
machine, with text written as a sequence of characters.

See Chapter 3 Examples of HSAIL Programs (p. 25).

Most lines of source text contain operations made up of an opcode with a set of suffixes
specifying data type, length, and other attributes. Operations in HSAIL are simple
three-operand, RISC-like constructs. There are also assorted pseudo-operations used
to declare variables.

All mathematical operations are register-to-register only. For example, to multiply
two numbers, the values are loaded into registers and one of the multiply operations
(mul_s32, mul_u32, mul_s64, mul_u64, mul_f32, or mul_f64) is used.

Each HSAIL program has its own set of resources. For example, each work-item has
a private set of registers.

HSA has a unified memory model, where all HSAIL work-items and agents can use
the same pointers, and a pointer can address any kind of HSA memory. Programmers
are relieved of much of the burden of memory management. The HSA system
determines if a load or store address should be visible to all agents in the system (global
memory), visible only to work-items in a group (group memory), or private to a work-
item (private memory). The same pointer can be used by all agents in the system
including all host CPUs and all HSA components. Global memory (but not group
memory or private memory) is coherent between all agents.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Overview 3

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

4 Overview  

Chapter 2

HSAIL Programming Model
This chapter describes the HSAIL programming model.

2.1 Overview of Grids, Work-Groups, and Work-Items
The figure below shows a graphical view of the concepts that affect an HSAIL
implementation.

Figure 2–1 A Grid and Its Work-Groups and Work-Items

Programmers, compilers, and tools identify a portion of an application that is executed
many times, but independently on different data. They can structure that code into a
kernel that will be executed by many different work-items.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Programming Model 5

The kernel language runtime can be used to invoke the kernel language compiler that
will produce HSAIL. The HSA runtime can then be used by the language runtime to
execute the finalizer for the HSA component that will execute the kernel. The finalizer
takes the HSAIL and produces kernel ISA that will execute on that HSA component. If
the HSAIL requires more resources than are available on the device, it will return a
failure result. For example, the kernel might require more group memory, or more
fbarriers than are available on the device.

An HSA component can have multiple AQL queues associated with it. Each queue has
a queue ID, which is unique across all the queues currently created by the process
executing the program.

A request to execute a kernel is made by appending an AQL dispatch packet on a queue
associated with an HSA component. Each dispatch packet is assigned a dispatch ID that
is unique for each queue.

Each HSA component services all the queues associated with it, and dispatches the
kernel ISA associated with the queued dispatch packets, which causes the kernel to
be executed. If the HSA component has insufficient resources to execute at least one
work-group, then the dispatch fails, no kernel execution occurs, and the dispatch
completion object indicates a failure. For example, the dispatch might request more
dynamic group memory than is available. A dispatch may, but is not required to, fail
if the dispatch arguments are not compatible with any control directives specified
when the kernel was finalized. For example, the dispatch work-group size might not
match the values specified by a requiredworkgroupsize control directive.

The combination of the dispatch ID and the queue ID is globally unique. Operations in
a kernel can access these IDs by means of the dispatchid and qid special operations.
(See Chapter 12 Special Operations (p. 211).)

The dispatch forms a grid. The grid can be composed of one, two, or three dimensions.
The dimension components are referred to as X, Y, and Z. If the grid has one
dimension, then it has only an X component, if it has two dimensions, then it has X and
Y components, and if it has three dimensions, then it has X, Y, and Z components.

A grid is a collection of work-items. (See 2.3 Work-Items (p. 8).

The work-items in the grid are partitioned into work-groups that have the same
number of dimensions as the grid. (See 2.2 Work-Groups (p. 7).)

A work-group is an instance of execution on the HSA component. Execution is
performed by a compute unit. An HSA component can have one or more compute
units.

When a kernel is dispatched, the number of dimensions of the grid (which is also the
number of dimensions of the work-group), the size of each grid dimension, the size of
each work-group dimension, and the kernel argument values must be specified. If the
number of dimensions specified for a kernel dispatch is 1, then the Y and Z
components for the grid and work-group size must be specified as 1; if the number of
dimensions specified for a kernel dispatch is 2, then the Z component for the grid and
work-group size must be specified as 1.

As execution proceeds, the work-groups in the grid are distributed to compute units.
All work-items of a work-group are executed on the same compute unit at the same
time, each work-item running the kernel. Execution can be either concurrent, or
through some form of scheduling. (See 2.6 Wavefronts, Lanes, and Wavefront Sizes
(p. 11).)

The grid size is not required to be an integral multiple of the work-group size, so the
grid might contain partial work-groups. In a partial work-group, only some of the

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

6 HSAIL Programming Model  

work-items are valid. The compute unit will only execute the valid work-items in a
partial work-group.

A compute unit may execute multiple work-groups at the same time. The resources
used by a work-group (such as group memory, barrier and fbarrier resources, and
number of wavefronts that can be scheduled) and work-items within the work-group
(such as registers) may limit the number of work-groups that a compute unit can
execute at the same time. However, a compute unit must be able to execute at least
one work-group. If an HSA component has more than one compute unit, different
work-groups may execute on different compute units.

In the figure, the grid is composed of 24 work-groups. (Dimension X = 2, dimension Y
= 4, and dimension Z = 3.)

In the figure, each work-group is a three-dimensional work-group, and each work-
group is composed of 105 work-items. (Dimension X = 7, dimension Y = 5, and
dimension Z = 3.)

For information about wavefronts, see 2.6 Wavefronts, Lanes, and Wavefront Sizes (p.
11).

2.2 Work-Groups
A work-group is an instance of execution in a compute unit. A compute unit must have
enough resources to execute at least one work-group at a time. Thus, it is not possible
for a compute unit to be too small.

Assorted synchronization operations can be used to control communication within a
work-group. For example, it is possible to mark barrier synchronization points where
work-items wait until other work-items in the work-group have arrived.

All implementations can execute at least the number of work-items in a work-group
such that they are all guaranteed to make forward progress in the presence of work-
group barriers.

Implementations that provide multiple compute units or more capable compute units
can execute multiple work-groups simultaneously.

2.2.1 Work-Group ID

Every work-group has a multidimensional identifier containing up to three integer
values (for the three dimensions) called the work-group ID. The work-group ID is
calculated by dividing each component of the work-item absolute ID by the
corresponding work-group size component and ignoring the remainder. (See 2.3.3
Work-Item Absolute ID (p. 9).)

Work-group size is the product of the three dimensions:
work-group size = workgroupsize0 * workgroupsize1 * workgroupsize2

Each work-group can access assorted predefined read-only values such as work-
group ID, work-group size, and so forth through the use of special operations. See
Chapter 12 Special Operations (p. 211).)

The value of the work-group ID is returned by the workgroupid operation.

The size of the work-group specified when the kernel was dispatched is returned by
the workgroupsize operation.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Programming Model 7

Because the grid is not required to be an integral multiple of the work-group size, there
can be partial work-groups. The currentworkgroupsize operation returns the work-
group size that the current work-item belongs to. The value returned by this operation
will only be different from that returned by workgroupsize operation if the current
work-item belongs to a partial work-group.

2.2.2 Work-Group Flattened ID

Each work-group has a work-group flattened ID.

The work-group flattened ID is defined as:
work-group flattened ID = work-item flattened absolute ID / work-group size

HSAIL implementations need to ensure forward progress. That is, any program can
count on one-way communication and later work-groups (in work-group flattened ID
order) can wait for values written by earlier work-groups without deadlock.

2.3 Work-Items
Each work-item has its own set of registers, has private memory, and can access
assorted predefined read-only values such as work-item ID, work-group ID, and so
forth through the use of special operations. See Chapter 12 Special Operations (p.
211).)

To access private memory, work-items use regular loads and stores, and the HSA
hardware will examine addresses and detect the ranges that are private to the work-
item. One of the system-generated values tells the work-item the address range for
private data.

Work-items are able to share data with other work-items in the same work-group
through a memory segment called the group segment. Memory in a group segment is
accessed using loads and stores. This memory is not accessible outside its associated
work-group (that is, it is not seen by other work-groups or agents). See 2.8 Segments
(p. 13).

2.3.1 Work-Item ID

Each work-item has a multidimensional identifier containing up to three integer
values (for the three dimensions) within the work-group called the work-item ID.

max is the size of the work-group or 1.

For each dimension i, the set of values of IDi is the dense set [0, 1, 2, ... maxi −
1].

The value of maxi can be accessed by means of the special operation workgroupsize.

The work-item ID can be accessed by means of the special operation workitemid.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

8 HSAIL Programming Model  

2.3.2 Work-Item Flattened ID

The work-item ID can be flattened into one dimension, which is relative to the
containing work-group. This is called the work-item flattened ID.

The work-item flattened ID is defined as:
work-item flattened ID = ID0 + ID1 * max0 + ID2 * max0 * max1

where:
ID0 = workitemid (dimension 0)

ID1 = workitemid (dimension 1)

ID2 = workitemid (dimension 2)

max0 = workgroupsize (dimension 0)

max1 = workgroupsize (dimension 1)

The work-item flattened ID can be accessed by means of the special operation
workitemflatid.

2.3.3 Work-Item Absolute ID

Each work-item has a unique multidimensional identifier containing up to three
integer values (for the three dimensions) called the work-item absolute ID. The work-
item absolute ID is unique within the grid.

Programs can use the work-item absolute IDs to partition data input and work across
the work-items.

For each dimension i, the set of values of absolute IDi are the dense set [0, 1, 2, ...
maxi − 1].

The value of maxi can be accessed by means of the special operation gridsize.

The work-item absolute ID can be accessed by means of the special operation
workitemabsid.

2.3.4 Work-Item Flattened Absolute ID

The work-item absolute ID can be flattened into one dimension into an identifier called
the work-item flattened absolute ID. The work-item flattened absolute ID enumerates
all the work-items in a grid.

The work-item flattened absolute ID is defined as:
work-item flattened absolute ID = ID0 + ID1 * max0 + ID2 * max0 * max1

where:
ID0 = workitemabsid (dimension 0)

ID1 = workitemabsid (dimension 1)

ID2 = workitemabsid (dimension 2)

max0 = gridsize (dimension 0)

max1 = gridsize (dimension 1)

The work-item flattened absolute ID can be accessed by means of the special operation
workitemflatabsid.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Programming Model 9

2.4 Scalable Data-Parallel Computing
For CPU developers, the idea of work-items and work-groups might seem odd,
because one level of threads has traditionally been enough.

Work-items are similar in some ways to traditional CPU threads, because they have
local data and a program counter. But they differ in a couple of important ways:

• Work-items can be gang-scheduled while CPU threads are scheduled separately.

• Work-items are extremely lightweight. Thus, a context change between two
work-items is not a costly operation.

The number of work-groups that can be processed at once is dependent on the amount
of hardware resources. Adding work-groups makes it possible to abstract away this
concept so that developers can apply a kernel to a large grid without worrying about
fixed resources. If hardware has few resources, it executes the work-groups
sequentially. But if it has a large number of compute units, it can process them in
parallel.

2.5 Active Work-Groups and Active Work-Items
At any instance of time, the work-groups executing in compute units are called the
active work-groups. When a work-group finishes execution, it stops being active and
another work-group can start. The work-items in the active work-groups are called
active work-items. Resource limits, including group memory, can constrain the
number of active work-groups.

An active work-item at an operation is one that executes the current operation. For
example:
if (condition) {
 operation;
}

The active work-items at this operation are the work-items where condition was
true.

Resource limits might constrain the number of active work-items. However, every
HSAIL implementation must be able to support enough active work-items to be able
to execute at least one maximum-size work-group. Resources such as private memory
and registers are not persistent over work-items, so implementations are allowed to
reuse resources. When a work-group finishes, it and all its work-items stop being
active and the resources they used (private memory, registers, group memory,
hardware resources used to implement barriers, and so forth) might be reassigned.

Work-group (i +j) might start after work-group (i) finishes, so it is not valid for a work-
group to wait on an operation performed by a later work-group.

When a work-group finishes, the associated resources become free so that another
work-group can start.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

10 HSAIL Programming Model  

2.6 Wavefronts, Lanes, and Wavefront Sizes
Work-items within a work-group can be executed in an extended SIMD (single
instruction, multiple data) style. That is, work-items are gang-scheduled in chunks
called wavefronts. Executing work-items in wavefronts can allow implementations to
improve computational density.

Work-items are assigned to wavefronts in work-item flattened absolute ID order: X
then Y then Z. This can be useful to expert programmers. (See 2.3.4 Work-Item
Flattened Absolute ID (p. 9).)

A lane is an element of a wavefront. The wavefront size is the number of lanes in a
wavefront. Wavefront size is an implementation-defined constant, and must be a
power of 2 in the range from 1 to 64 inclusive. Thus, a wavefront with a wavefront size
of 64 has 64 lanes.

If the work-group size is not a multiple of the wavefront size, the last wavefront will
have extra lanes that do not contribute to the computation.

Two work-items in the same work-group will be in the same wavefront if the floor of
work-item flattened absolute ID / wavefront size is the same.

2.6.1 Example of Contents of a Wavefront

Assume that the work-group size is 13 (X dimension) by 3 (Y dimension) by 11 (Z
dimension) and the wavefront size is 64. Thus, a work-group would need 13 * 3 * 11 =
429 work-items. The number of work-items divided by 64 = 6 with a remainder of 45.

Six wavefronts (wavefronts 0, 1, 2, 3, 4, and 5) would hold 384 work-items. The
remaining 45 work-items would be in the seventh wavefront (wavefront 6), which
would be partially filled.

See the tables below.

Table 2–1 Wavefronts 0 Through 6

Wavefront 0

Dimensions X, Y, Z 0-12, 0, 0 0-12, 1, 0 0-12, 2, 0 0-12, 0, 1 0-11, 1, 1

Work-Item Absolute Flattened IDs 0-12 13-25 26-38 39-51 52-63

Lane IDs 0-12 13-25 26-38 39-51 52-63

Wavefront 1

Dimensions X, Y, Z 12, 1, 1 0-12, 2, 1 0-12, 0, 2 0-12, 1, 2 0-12, 2, 2 0-10, 0, 3

Work-Item Absolute Flattened IDs 64 65-77 78-90 91-103 104-116 117-127

Lane IDs 0 1-13 14-26 27-39 40-52 53-63

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Programming Model 11

Wavefront 2

Dimensions X, Y, Z 11-12, 0, 3 0-12, 1, 3 0-12, 2, 3 0-12, 0, 4 0-12, 1, 4 0-9, 2, 4

Work-Item Absolute Flattened IDs 128-129 130-142 143-155 156-168 169-181 182-191

Lane IDs 0-1 2-14 15-27 28-40 41-53 55-63

Wavefront 3

Dimensions X, Y, Z 10-12, 2, 4 0-12, 0, 5 0-12, 1, 5 0-12, 2, 5 0-12, 0, 6 0-8, 2, 4

Work-Item Absolute Flattened IDs 192-194 195-207 208-220 221-233 234-246 247-255

Lane IDs 0-2 3-15 16-28 29-41 42-54 53-63

Wavefront 4

Dimensions X, Y, Z 9-12, 1, 6 0-12, 2, 6 0-12, 0, 7 0-12, 1, 7 0-12, 2, 7 0-7, 0, 8

Work-Item Absolute Flattened IDs 256-259 260-272 273-285 286-298 299-311 312-319

Lane IDs 0-3 4-16 17-29 30-42 43-55 56-63

Wavefront 5

Dimensions X, Y, Z 8-12, 0, 8 0-12, 1, 8 0-12, 2, 8 0-12, 0, 9 0-12, 1, 9 0-6, 2, 9

Work-Item Absolute Flattened IDs 320-324 325-337 338-350 351-363 364-376 377-383

Lane IDs 0-4 5-17 18-30 31-43 44-56 57-63

Wavefront 6

Dimensions X, Y, Z 7-12, 2, 9 0-12, 0, 10 0-12, 1, 10 0-12, 2, 10

Work-Item Absolute Flattened IDs 384-389 390-402 403-415 416-428

Lane IDs 0-5 6-18 19-31 32-44

The rest of wavefront 6 is unused.

2.6.2 Wavefront Size

On some implementations, a kernel might be more efficient if it is written with
knowledge of the wavefront size. Thus, HSAIL includes a compile-time macro,
WAVESIZE, which can be used in any operation where an integer or bit immediate value
is allowed, and as the argument to the width modifier (see 2.13.1 Width Modifier (p.
22)).

WAVESIZE is only available inside the HSAIL code.

In Extended Backus-Naur Form, WAVESIZE is called TOKEN_WAVESIZE.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

12 HSAIL Programming Model  

Developers need to be careful about wavefront size assumptions, because programs
coded for a single wavefront size could generate wrong answers or deadlock if the
code is executed on implementations with a different wavefront size.

The grid size does not need to be an integral multiple of the wavefront size.

2.7 Types of Memory

HSAIL memory is organized into three types:

• Flat memory

Flat memory is a simple interface using byte addresses. Loads and stores can be
used to reference any visible location in the flat memory.

For more information, see 2.8 Segments (p. 13) and 2.9 Flat Memory and Agents
(p. 18).

• Registers

There are four register sizes:

• 1-bit

• 32-bit

• 64-bit

• 128-bit

Registers are untyped.

For more information, see 4.12 Registers (p. 40).

• Image memory

Image memory is a special kind of memory access that can make use of dedicated
hardware often provided for graphics. Only programmers seeking extreme
performance need to understand image memory.

For more information, see Chapter 7 Image Operations (p. 147).

All HSAIL implementations support all three types of memory.

2.8 Segments
Flat memory is divided into segments based on:

• The way data can be shared

• The intended usage

A segment is a block of memory. The characteristics of a segment space include its
size, addressability, access speed, access rights, and level of sharing between work-
items.

The segment determines the part of memory that will hold the object, how long the
storage allocation exists, and the properties of the memory. The finalizer uses the

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Programming Model 13

segment to determine the intended usage of the memory. There is no bounds checking
over segments.

No access protection between segments is provided. That is, the behavior is undefined
when memory operations generate addresses that are outside the bounds of a
segment.

2.8.1 Types of Segments

There are seven types of segments:

• Global

Memory that is visible to all work-groups and to all agents.

This segment supports read/write access for all work-items in all work-groups.
All agents including HSA components can read and write global memory.

All global memory is persistent across the application.

• Group

Memory that is visible to a single work-group.

This segment can be used to hold variables that are shared by all work-items in
a work-group. An address in group memory can be read and written by any
work-item in the group.

If an implementation uses regular memory to implement group memory, it must
adjust the group segment addresses used by work-items in one work-group so
that accesses by work-items in a different work-group access different memory
locations for the same group segment address.

Group memory is uninitialized when the work-group starts execution.

It is undefined whether or not group memory is visible to other agents.

One specific implementation-defined range of flat addresses is reserved for
group memory.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

14 HSAIL Programming Model  

• Private

Memory that is visible only to a single work-item.

Although it is permitted for an implementation to allow other work-items to
access the values in a different work-item's private memory, a program is
undefined if it does so. For example, an implementation may use global memory
to implement private memory and so a work-item could use a global or flat
address to access the private memory of any work-item.

If an implementation uses regular memory to implement private memory, it
must adjust the private segment addresses used by each work-item so that
different work-items access different memory locations for the same private
segment address.

It is implementation-defined whether or not private memory is visible to other
agents.

Private memory is uninitialized when the work-item starts. The finalizer is free
to remove loads and stores to private memory if this does not change the single
work-item answer without regard to exceptions. For example, a floating-point
divide can be removed if its only effect is to cause a divide by zero exception.

• Kernarg

Read-only memory used to pass arguments into a kernel.

Implementations are allowed either to provide special hardware or to use
kernarg memory.

Implementations are allowed to treat kernarg and global memory as though they
are a single segment.

For more information, see 4.25 Kernarg Segment (p. 62).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Programming Model 15

• Readonly

Read-only memory.

Readonly memory remains constant during the execution of a kernel.

The result of a store or atomic operation to readonly memory (such as by using
a flat address) is undefined, and it is implementation-defined if such accesses will
be detected and generate an exception.

Implementations are allowed to treat readonly and global memory as though
they are a single segment.

The finalizer might place a variable in readonly memory in specialized read-only
caches.

• Spill

Memory that is visible only to a single work-item.

Used to load or store register spills. This segment is used as a hint to the finalizer
so it can generate better code.

The finalizer might remove operations using the spill segment.

Implementations are allowed to treat spill and private memory as though they
are a single segment.

• Arg

Memory that is visible only to a single work-item.

Used to pass arguments into and out of functions.

Implementations are allowed to provide special hardware to accelerate arg
memory.

Implementations are allowed to treat arg and private memory as though they
are a single segment.

For more information, see 10.4 Arg Segment (p. 200).

See also 5.15 Segment Checking (segmentp) Operation (p. 108) and 5.16 Segment
Conversion Operations (p. 110).

2.8.2 Shared Virtual Memory

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

16 HSAIL Programming Model  

Shared virtual memory is a basis of HSA. It means:

• A single work-item sees a flat address space.

Within that address space, certain address ranges are group memory, other
ranges are private, and so on. Implementations use the address to determine the
kind of memory. Consequently, compilers need not generate special forms of
loads and stores for each type of memory. Pointers to memory can be freely cast
to integer and back without problems.

• Non-shared objects are hidden.

This means that each object is declared to be in one of three sharing levels:
shared over all work-items (global), shared over the work-group (group), or
never shared (private).

The private segments for each work-item overlay. Overlaying means that reads
and writes to address X in work-item 1 access work-item 1's private data, while
reads and writes to the same address X in work-item 2 access different storage.
Thus, if work-item 1 declares a private variable at address X, then work-item 2
cannot read or write the variable. (Spill segments behave in the same way.)

Similarly, every work-group sees only its own group segment, which is shared
by the work-items within the work-group, so no work-group can access the
group memory of another work-group.

Every work-item and agent sees the same global memory.

2.8.3 Addressing for Segments

Memory operations can use a flat address or specify the particular segment used.

If they use flat addresses, implementations will recognize when an address is within
a particular segment.

If they specify the particular segment used, the address is relative to the start of the
segment.

If an address in group memory for work-group A is stored in global memory and then
is accessed by a different work-group B, the results are undefined.

When a flat memory operation addresses location P, the address P is translated to an
effective address Q as follows:

1. If P is inside the flat address bounds of the private, spill, or arg memory segments,
then Q is set to an implementation-defined function of (P − start of the segment)
and the work-item absolute ID. The implementation-defined function is
intended to enable optimized memory layouts such as interleaving the memory
locations accessible by each work-item to improve the memory access pattern
of the gang-scheduled wavefronts.

2. If P is inside the flat address bounds of the group memory segment, then Q is set
to an implementation-defined function of (P − start of the group segment) and the
work-group absolute ID.

3. If P is not inside the flat address bounds of the private, spill, arg, or group
memory segments, then Q is set to an implementation-defined function of P. The
implementation-defined function is intended to enable optimized memory
layouts such as interleaving or tiling.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Programming Model 17

Implementations can provide special hardware to accelerate this translation.

If two work-items try to reference the same address in private, spill, or arg memory,
step 2 above will ensure that the effective addresses are different. This guarantees that
private really is private, and allows programs to address private memory without
complex addressing.

For example, if the private segment started at address 1000 and ended at 2000, then the
private segment for work-group A might be from 1000 to 1255, while work-group B
might use 1256 to 1511, and so forth.

If work-item 0 in work-group A used segment-relative address 100, it would address
1100, while if work-item 0 in work-group B used the same relative address 100, it would
address 1356.

A memory operation can be marked with a segment. In that case, the address in the
operation is treated as segment-relative.

For more information, see 6.1 Memory and Addressing (p. 121).

2.9 Flat Memory and Agents
All HSAIL implementations can map some flat memory into the address space
accessible to agents. See Table 2–2 (p. 18).

Table 2–2 Flat Memory and Agents

Segment HSAIL Can be
initialized?

Persistence Agent interaction Combinable?

Global General global
space

Yes Application Shared with all agents.

Readonly Read-only Yes Application Can be initialized by
host CPU.

Can be combined
with global
segment.

Kernarg Holds kernel
arguments;
read-only

No Kernel Written by the agent
when the kernel
dispatch is queued.

Can be combined
with global
segment.

Group Read-write No Work-group It is implementation-
defined if other agents
can see group
memory.

Arg Holds function
arguments;
input arguments
are read-only;
output
arguments are
write-only

No Work-item Input arguments
initialized when
function is called by
kernel or another
function. It is
implementation-
defined if other agents
can see arg memory.

Can be combined
with private
segment.

Private No Work-item It is implementation-
defined if other agents
can see private
memory.

Spill Holds spilled
register values;
read-write

No Work-item It is implementation-
defined if other agents
can see spill memory.

Can be combined
with private
segment.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

18 HSAIL Programming Model  

The same global and readonly segment address, and its corresponding flat address,
can be used in two different work-items (which can be in different kernels and
different dispatches of the same kernel) and in an agent to access the same memory
location. Standard page protections (read-only/read-write/protected, and so forth)
apply to global and readonly segment memory. See the HSA System Architecture
Specification for information.

An implementation is not required to use read-only protection on the readonly
segment variables.

Global and readonly memory may be visible to agents. Runtime libraries can provide
a way for applications to indicate that some global memory is not accessible to agents.

An implementation can map group addresses to special scratchpad memory allocated
for each HSA component compute unit, to addresses in global memory, or to addresses
in other agent memory. It is implementation-defined whether or not other agents can
access group memory.

Private, spill, and arg memory can be expanded to multiple addresses in the address
space (one for every active work-item) or can be implemented by special hardware.
It is implementation-defined whether or not other agents can access private, spill, or
arg memory.

2.9.1 Persistence Rules

The persistence of a memory segment specifies how stores in the segment can be seen
by other loads.

Each segment has one of the following persistence values:

• Application: stores in one kernel can be seen by loads of another kernel in the
same application execution.

• Kernel: stores in one kernel execution can be seen by loads in the same kernel
execution.

• Work-group: stores in work-items in one work-group can only be seen by loads
in work-items in the same work-group.

• Work-item: stores in one work-item can only be seen by loads in the same work-
item.

In addition, the scope of the declaration can further restrict if its value can be accessed.
Private and spill variables declared in a function can only be accessed while the
function is being executed by the work-item. Arg variables can only be accessed while
the containing argument scope is being executed by the work-item. See 4.10 Storage
Duration (p. 38).

The persistence also specifies if it is defined whether a segment address can be used
in a memory access. It can only be used in the same persistence entity that created it.
For example, if the persistence is application, then the address can be used to access
the memory value in any work item in any kernel dispatched by the application. If the
persistence is work-item, then only the work-item that created the address can access
it.

The variable referenced by a segment address is only defined if the value it references
is defined. For example, it is not defined if a group segment address created in a work-
item of one work-group will access the same named variable in a work-item of another
work-group.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Programming Model 19

If a segment address is converted to a flat address, it is only defined to convert the flat
address back to a segment address of the original kind or to a segment that the
implementation has combined with that segment. This is consistent with the results
returned by the segmentp operation. See 5.15 Segment Checking (segmentp)
Operation (p. 108).

If a segment address is converted to a flat address, and back to a segment address of
a different segment kind that the implementation has combined with the original
segment kind, then the address does not need to be the same value as the original
address. However, accesses using it must behave the same as accesses using the
original address. This allows segmentp to be used to determine a valid segment address
to which the flat address can be converted. This can then be used to perform segment
address accesses, which might perform better on some implementations than flat
address accesses.

The persistence rules also apply to flat addresses. A flat address memory access is only
defined if the memory access is defined for the original segment address.

It is only defined to convert a flat address to a segment address if the value accessed
by the flat address is defined. For example, it is not defined to convert a private
segment address into a flat address in one work-item, and then convert the flat address
back to a private segment address in another work-item. It is not defined to access the
private value in the first work-item, nor is it defined to access the value of the same
named variable in the second work-item.

2.10 Small and Large Machine Models
HSAIL supports two machine models. Machine models determine the size of a data
pointer and are not compatible. Table 2–3 (p. 20) shows the address sizes used for the
two models supported by HSAIL.

The machine model of the HSAIL code executed by an HSA component must match
the address space size of the process that owns the queue on which the kernel was
dispatched. A process executing with a 32-bit address space size requires the HSAIL
code to have the small machine model. A process executing with a 64-bit address space
requires the HSAIL code to have the large machine model.

The small model might be appropriate for a legacy CPU 32-bit application that wants
to use program data-parallel sections.

The model must be specified using the version statement. See 15.1 Syntax of the
version Statement (p. 237).

Table 2–3 Machine Model Address Sizes

Small Large

Flat address 32-bit 64-bit

Global segment address 32-bit 64-bit

Readonly segment address 32-bit 64-bit

Kernarg segment address 32-bit 64-bit

Group segment address 32-bit 32-bit

Arg segment address 32-bit 32-bit

Private segment address 32-bit 32-bit

Spill segment address 32-bit 32-bit

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

20 HSAIL Programming Model  

Small Large

Label address 32-bit 64-bit

Function pointer 32-bit 64-bit

Fbarrier address 32-bit 32-bit

Address expression offset 32-bit 64-bit

The small machine model has these constraints:

• Stores may be done 32 bits at a time. A 64-bit store can be done in 32-bit chunks.

• Acquire and release can only be applied to 32-bit (or smaller) loads and stores.

• Pointers are 32 bits.

• 64-bit atomic operations are not supported.

• For register plus offset addressing, the offset must be 32 bits.

2.11 Base and Full Profiles
HSAIL provides two kinds of profiles:

• Base

• Full

HSAIL profiles are provided to guarantee that the implementation supports a required
feature set and meets a given set of program limits. The strictly defined set of HSAIL
profile requirements provides portability assurance to users that a certain level of
support is present.

The profile must be specified using the version statement. See 15.1 Syntax of the
version Statement (p. 237).

For more information, see Chapter 17 Profiles (p. 241).

2.12 Race Conditions
If multiple work-items access the same addresses in group or global memory and one
of the accesses is a store, then it is possible to have a race condition.

In general, programs should add synchronization to avoid race conditions.

2.13 Divergent Control Flow
On HSA components with a wavefront size greater than 1, branches can introduce a
performance issue called divergent control flow.

When a wavefront executes a conditional or indirect branch, it is possible that the
work-items in the wavefront take different paths. This causes the wavefront to enter
divergent control flow. Because SIMD implementations cannot execute different

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Programming Model 21

instructions in the same cycle, executing in divergent control flow might be less
efficient.

An implementation can improve performance in divergent control flow by
reconverging the work-items. For example, given an IF/THEN/ELSE/ENDIF, the
wavefront could diverge at the IF and reconverge at the ENDIF.

Implementations must reconverge no later than the immediate post-dominator (as
described in 2.13.2 Post-Dominator and Immediate Post-Dominator (p. 23)), but may
reconverge earlier.

Because implementations are allowed to execute the work-items in a wavefront in
lockstep, it is illegal for a work-item in a wavefront to spin wait for a value written by
a second work-item in the same wavefront.

Reliable communication between work-items requires synchronization. If one work-
item writes into a location and a different work-item reads back the same location
without using synchronization, the result is undefined.

2.13.1 Width Modifier

Because each implementation might have a different wavefront size, HSAIL provides
a way to indicate that certain operations have behavior that changes depending on the
wavefront size. Some HSAIL operations (specifically ld, brn, cbr, barrier, and call)
take a width modifier. It is specified as width(n), width(WAVESIZE), or width(all).

The value of n must be a power of 2 between 1 and 231 inclusive. width(WAVESIZE)
specifies the implementation-defined number of work-items in a wavefront (see 2.6
Wavefronts, Lanes, and Wavefront Sizes (p. 11)). width(all) specifies that n includes
all work-items in the work-group. The default for the width modifier if it is omitted
depends on the operation, and can either be width(1) or width(all).

The width modifier conceptually divides the work-group's work-items into slices of
size n work-items. Two work-items in the same work-group are in the same slice if
the two work-items' flattened ID modulo n are the same.

For example, barrier_width(n) is a barrier operation specifying that a subset of all
work-items within a work-group is participating in some form of communication at
this point. The barrier_width(n) operation can be performed between the n work-
items in the same slice. There is no requirement for the work-items in other slices to
participate in the barrier, and no guarantees are made in this respect.
barrier_width(n) indicates that no communication will happen between work-items
that are in different slices.

The width modifier is only a performance hint. An implementation is allowed to ignore
the width modifier and always synchronize with all work-items of the work-group.
An implementation is also allowed to ignore the width modifier in these situations: n
is greater than the wavefront size and n is not an exact multiple of the wavefront size;
or n is less than or equal to wavefront size and the wavefront size is not an exact
multiple of n. If n is less than or equal to wavefront size and the wavefront size is an
exact multiple of n, then an implementation may be able to avoid using explicit code
to implement barriers, because the gang-scheduling execution of wavefronts will
ensure synchronization.

See also 8.3 Using the Width Modifier (p. 175).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

22 HSAIL Programming Model  

2.13.2 Post-Dominator and Immediate Post-Dominator

The post-dominator of a branch operation b is defined as a point p in the program such
that every path from the operation b that reaches the end of the function or kernel
must go through p. No matter which path is taken out of b, control will eventually reach
p. The immediate post-dominator is the unique point that does not post-dominate any
other post-dominator of b.

For example:
cbr $c1, @x; // a conditional branch
// ...
@x: // all code that leaves the cbr must eventually reach @x
// ...
@y: // and that code must reach @y

In this example, both @x and @y are post-dominators of the branch, but only x is the
immediate post-dominator.

2.14 Uniform Operations
An operation over a set of work-items is termed a uniform operation if all work-items
in the set produce the same result. The set of work-items could be the grid, the work-
group, the slice of work-items specified by the width modifier, or the wavefront.

For example, a load operation is uniform if all work-items in the set use the same value
for the source address. For another example, a conditional branch operation is
uniform if all work-items in the set either take the branch or do not take the branch.

If a finalizer can determine that an operation is uniform over all sets of work-items of
a particular kind within the grid, it might be able to generate more efficient code by
executing the operation once and broadcasting the result to all work-items in the set.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Programming Model 23

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

24 HSAIL Programming Model  

Chapter 3

Examples of HSAIL Programs
This chapter provides examples of HSAIL programs.

The syntax and semantics and operations are explained in subsequent chapters. These
examples are provided early in this manual so you can see what an HSAIL program
looks like.

3.1 Vector Add Translated to HSAIL
The “hello world” of data parallel processing is a vector add.

Suppose the high-level compiler has identified a section of code containing a vector
add operation, as shown below:
__kernel void vec_add (__global const float *a,
 __global const float *b,
 __global float *c,
 const unsigned int n)
{
 // Get our global thread ID
 int id = get_global_id(0);

 // Make sure we do not go out of bounds
 if (id < n)
 c[id] = a[id] + b[id];
}

The code below shows one possible translation to HSAIL:

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Examples of HSAIL Programs 25

version 1:0:$full:$small;

function &get_global_id(arg_u32 %ret_val) (arg_u32 %arg_val0);

function &abort() ();

kernel &__OpenCL_vec_add_kernel(
 kernarg_u32 %arg_val0,
 kernarg_u32 %arg_val1,
 kernarg_u32 %arg_val2,
 kernarg_u32 %arg_val3)
{
@__OpenCL_vec_add_kernel_entry:
// BB#0: // %entry
 ld_kernarg_u32 $s0, [%arg_val3];
 workitemabsid_u32 $s1, 0;
 cmp_lt_b1_u32 $c0, $s1, $s0;
 ld_kernarg_u32 $s0, [%arg_val2];
 ld_kernarg_u32 $s2, [%arg_val1];
 ld_kernarg_u32 $s3, [%arg_val0];
 cbr $c0, @BB0_2;
 brn @BB0_1;
@BB0_1: // %if.end
 ret;
@BB0_2: // %if.then
 shl_u32 $s1, $s1, 2;
 add_u32 $s2, $s2, $s1;
 ld_global_f32 $s2, [$s2];
 add_u32 $s3, $s3, $s1;
 ld_global_f32 $s3, [$s3];
 add_f32 $s2, $s3, $s2;
 add_u32 $s0, $s0, $s1;
 st_global_f32 $s2, [$s0];
 brn @BB0_1;
};

3.2 Transpose Translated to HSAIL
The code below shows one way to write a transpose.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

26 Examples of HSAIL Programs  

version 1:0:$full:$small;

function &get_global_id(arg_u32 %ret_val) (arg_u32 %arg_val0);

function &get_local_id(arg_u32 %ret_val) (arg_u32 %arg_val0);

function &barrier() (arg_u32 %arg_val0, arg_u32 %arg_val1);

function &get_group_id(arg_u32 %ret_val) (arg_u32 %arg_val0);

function &abort() ();

kernel &__OpenCL_matrixTranspose_kernel(
 kernarg_u32 %arg_val0,
 kernarg_u32 %arg_val1,
 kernarg_u32 %arg_val2,
 kernarg_u32 %arg_val3,
 kernarg_u32 %arg_val4,
 kernarg_u32 %arg_val5)
{
@__OpenCL_matrixTranspose_kernel_entry:
// BB#0: // %entry
 workitemabsid_u32 $s0, 0;
 workitemabsid_u32 $s1, 1;
 ld_kernarg_u32 $s2, [%arg_val5];
 workitemid_u32 $s3, 0;
 workitemid_u32 $s4, 1;
 mad_u32 $s5, $s4, $s2, $s3;
 shl_u32 $s5, $s5, 2;
 ld_kernarg_u32 $s6, [%arg_val2];
 add_u32 $s5, $s6, $s5;
 ld_kernarg_u32 $s6, [%arg_val3];
 mad_u32 $s0, $s1, $s6, $s0;
 shl_u32 $s0, $s0, 2;
 ld_kernarg_u32 $s1, [%arg_val1];
 add_u32 $s0, $s1, $s0;
 ld_global_f32 $s0, [$s0];
 st_group_f32 $s0, [$s5];
 barrier;
 workgroupid_u32 $s0, 0;
 mad_u32 $s0, $s0, $s2, $s3;
 workgroupid_u32 $s1, 1;
 mad_u32 $s1, $s1, $s2, $s4;
 ld_kernarg_u32 $s2, [%arg_val4];
 mad_u32 $s0, $s0, $s2, $s1;
 shl_u32 $s0, $s0, 2;
 ld_kernarg_u32 $s1, [%arg_val0];
 add_u32 $s0, $s1, $s0;
 ld_group_f32 $s1, [$s5];
 st_global_f32 $s1, [$s0];
 ret;
};

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Examples of HSAIL Programs 27

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

28 Examples of HSAIL Programs  

Chapter 4

HSAIL Syntax and Semantics
This chapter describes the HSAIL syntax and semantics.

4.1 Two Formats
HSAIL programs can be sent to the finalizer in either of two formats:

• Text format

• Binary format (BRIG)

This chapter describes the text format.

The chapters describing HSAIL operations show syntax for both formats.

For more information about BRIG, see Chapter 19 BRIG: HSAIL Binary Format (p.
249).

4.2 Source Format
Source sequences are ASCII characters.

Lines are separated by the newline character ('\n') or by semicolons.

Tokens are separated by white space; this consists of comments (described later), or
white-space characters (space, horizontal tab, new-line, vertical tab, and form-feed),
or both.

The source character set consists of 96 characters: the space character, the control
characters representing horizontal tab, vertical tab, form feed, and new-line, plus the
following 91 graphical characters:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
_ { } [] # () < > % : ; . ? * + - / ^ & | ~ ! = , \ " ’

HSAIL is case-sensitive.

Every HSAIL input consists of a sequence of one or more programs.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 29

Figure 4–1 Program Syntax Diagram

A program begins with a version statement specifying the HSAIL language version
and the required target architecture.

Figure 4–2 version Statement

The version statement is followed by one or more top-level statements.

Figure 4–3 Top-Level Statements

For more information, see:

• Chapter 15 version Statement (p. 237)

• 4.5 Top-Level Statements (p. 31)

4.3 Code Blocks
A code block consists of a left curly brace ({) followed by one or more body statements
followed by a right curly brace (}) and a semicolon (;).

Figure 4–4 Code Block

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

30 HSAIL Syntax and Semantics  

Figure 4–5 Code Block End

For example:
{
private_u32 %z;
ret;
};

See 4.4 Body Statements (p. 31).

4.4 Body Statements
Body statements contain the bulk of the code in an HSAIL program.

Figure 4–6 Body Statement Syntax Diagram

4.5 Top-Level Statements
A top-level statement can be a directive, comment, global declaration, kernel, or
function.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 31

Figure 4–7 Top-Level Statement Syntax Diagram

For more information, see:

• 4.5.1 Directive (p. 32)

• 4.5.2 Comment (p. 32)

• 4.5.3 Global Declaration (p. 33)

• 4.5.4 Kernel (p. 33)

• 4.5.5 Function (p. 33)

4.5.1 Directive

A directive is used to control information in HSAIL.

Figure 4–8 Directive Syntax Diagram

For more information, see Chapter 14 Directives (p. 225).

4.5.2 Comment

Comments that can span multiple lines use non-nested /* and */. The comment starts
at the /* and extends to the next */, which might be on a different line.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

32 HSAIL Syntax and Semantics  

Comments use // to begin a comment that extends to the end of the current line.

Comments are treated as white-space.

In Extended Backus-Naur Form, TOKEN_COMMENT is used for both types of comment.

4.5.3 Global Declaration

Outside of any function, programs can declare functions, function signatures, and two
kinds of symbols: those that can be initialized and those that cannot.

Figure 4–9 Global Declaration Syntax Diagram

For more information, see

10.3 Function Declarations, Function Definitions, and Function Signatures (p. 199).

4.5.4 Kernel

A kernel is a kernel name followed by a kernel argument list followed by a code block.

Figure 4–10 Kernel Syntax Diagram

A single compilation unit can contain multiple kernels.

For information about code blocks, see 4.3 Code Blocks (p. 30).

4.5.5 Function

A function is a function definition followed by a code block.

A single compilation unit can contain multiple functions.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 33

Figure 4–11 Function Definition Syntax Diagram

A declprefix contains information about a declaration.

Figure 4–12 declprefix Syntax Diagram

See also 4.3 Code Blocks (p. 30).

See also Chapter 10 Functions (p. 197).

4.6 Operations
An operation is an executable HSAIL instruction.

The example below shows four operations:

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

34 HSAIL Syntax and Semantics  

global_f32 &array[256];
@start: workitemid $s1, 0;
 shl_u32 $s1, $s1, 2; // multiply by 2
 ld_global_b32 $s2, [&array][$s1]; // reads array[4* workid]
 add_f32 $s2, $s2, 0.5; // add 1/2

Operations consist of an opcode usually followed by an underscore followed by a type
and a length followed by a comma-separated list of zero or more operands and ending
with a semicolon.

Operands can be registers, constants, address expressions, or label names. The
destination operand is first, followed by source operands.

HSAIL allows finalizers to implement extensions specific to the finalizer. A finalizer
extension is an operation that is specified in the extension directive and accessed like
all HSAIL operations. For more information, see 14.1.1 How to Set Up Finalizer
Extensions (p. 225).

4.7 Strings
A string is a sequence of characters enclosed in double quotes (such as "abc").

Any character except for double quote ("), backslash (\) or newline can appear in the
sequence.

A backslash in the character string is treated specially. It starts an escape sequence.
Escape sequences are used for character patterns that are difficult to type.

There are three kinds of escape sequences:

• A backslash followed by up to three octal numbers (leading 0 not needed). For
example, '\012' is a newline.

• A backslash followed by an x (or X) and a hexadecimal number.

• A backslash followed by one of the following characters:

• \ - backslash character (octal 134)

• ' - single quote character (octal 047)

• " - double quote character (octal 042)

• ? - question mark character (octal 077)

• a - alarm or bell character (octal 007)

• b - backspace character (octal 010)

• f - formfeed character (octal 006)

• n - newline character (octal 012)

• r - carriage-return character (octal 015)

• t - tab character (octal 011)

This is a subset of the full C character-string constants, because Unicode forms
u,U,L are not supported.

In Extended Backus-Naur Form, a string is called a TOKEN_STRING.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 35

4.8 Identifiers
An identifier is a sequence of characters used to identify an HSAIL object.

Figure 4–13 Identifier Syntax Diagram

Figure 4–14 Name Syntax Diagram

4.8.1 Syntax

Identifiers that are register names must start with a dollar sign ($).

Identifiers that are labels must start with an at sign (@).

Identifiers that are not labels cannot contain an at sign (@).

Non-label identifiers with function scope start with a percent sign (%).

Non-label identifiers with compilation unit scope start with an ampersand (&).

Identifiers must not start with the characters __hsa.

The Extended Backus-Naur Form syntax is:

• A global identifier is referred to as a TOKEN_GLOBAL_IDENTIFIER.

• A local identifier is referred to as a TOKEN_LOCAL_IDENTIFIER.

• A label is referred to as a TOKEN_LABEL.

• A register is referred to as a TOKEN_CREGISTER, TOKEN_SREGISTER, or
TOKEN_DREGISTER.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

36 HSAIL Syntax and Semantics  

The second character of an identifier must be a letter (either lowercase a-z or
uppercase A-Z) or the special character _.

The remaining characters of an identifier can be either letters, _, or digits.

All characters in the name of an identifier are significant.

Every HSAIL implementation must support identifiers with names whose size ranges
from 1 to 1024 characters. Implementations are allowed to support longer names.

The same identifier can denote different things at different points in the program.

See also 4.22 Declaring and Defining Identifiers (p. 55).

4.8.2 Scope

An identifier is visible (that is, can be used) only within a section of program text called
a scope. Different objects named by the same identifier must have different scopes.

HSAIL uses a single global name space. Thus, it is not valid to have functions, kernels,
or variables declared outside a kernel or function with the same name.

Variables declared inside a kernel or function must be unique within the kernel or
function, but are not required to be unique with respect to other kernels or functions
that can define distinct objects with the same name.

Arguments defined inside an argument scope must be unique within the argument
scope, but can have the same name as the arguments and variables in other argument
scopes, or in the enclosing kernel or function's code block (in which case the argument
name hides the code block name).

There are four kinds of scopes:

• Compilation unit

• Function

• Signature

• Argument

Labels and formal parameters have function scope.

An argument defined in a function or kernel has argument scope. Arguments are
scoped from the point of definition to the end of the argument's scope. See 4.9
Argument Scope (p. 38).

Every other identifier has scope determined by the placement of its declaration:

• If the declaration appears outside of any function or kernel, the identifier has
compilation unit scope, which terminates at the end of the source program.

• If the declaration appears inside a function or kernel, the identifier has function
scope, which terminates at the end of the function or kernel code block.

If an identifier appears as a kernel argument, its scope terminates at the end of the
kernel's code block.

If an identifier appears as a formal parameter in a function definition, its scope
terminates at the end of the function's code block.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 37

If an identifier appears as an argument of a function in a function signature, then it
has signature scope, which terminates at the end of the signature. (Signature scope is
needed for function pointers.)

4.9 Argument Scope
Arguments must start with a percent (%) sign.

An argument scope consists of a code block. See 4.3 Code Blocks (p. 30).

Within an argument scope, there are optional definitions of arguments and exactly
one call operation.

Arguments are scoped from the point of definition to the end of the enclosing
argument scope.

It is not valid to branch into or out of an argument scope.

An argument declared inside an argument scope hides a declaration with the same
name outside the argument scope in the enclosing kernel or function scope.

Identifiers in the arg segment that are defined in an argument scope are visible from
the point of definition to the end of the argument scope code block. For more
information, see 10.4 Arg Segment (p. 200).

Argument scope does not affect variables that are not arguments. If a non-argument
variable is defined inside an argument scope, its lifetime extends to the end of the
kernel or function's code block.

Argument scopes cannot be nested.

Argument scopes can include multiple basic blocks.

See also 10.4 Arg Segment (p. 200).

4.10 Storage Duration
Global and readonly declarations can be used to allocate blocks of memory. The
memory is allocated when the program begins and lasts until the program ends. This
corresponds to the C++ notion of static storage duration. (See the C++ specification ISO/
IEC 14882:2011.)

Kernarg declarations that appear in a kernel's formal arguments are allocated when
a kernel starts and released when the kernel finishes.

Group declarations that appear inside a kernel, or at file scope, and are used by the
kernel or any of the functions it can call are allocated when a work-group starts
executing the kernel, and last until the work-group exits the kernel. Group
declarations that appear inside any function that can be called by the kernel are
allocated the same way. This is because group memory is shared between all work-
items in a work-group, and the work-items within the work-group might execute the
same function at different times. A consequence of this is that, if a function is called
recursively by a work-item, the work-item's multiple activations of the function will
be accessing the same group memory.

Private and spill declarations that appear inside a kernel, or private declarations that
appear at file scope (spill cannot appear at file scope), and are used by the kernel or

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

38 HSAIL Syntax and Semantics  

any of the functions it can call are allocated when a work-item starts executing the
kernel, and last until the work-item exits the kernel.

Private and spill declarations that appear inside a function are allocated each time the
function is entered by a work-item, and last until the work-item exits the function.

Arg declarations inside an argument scope are allocated each time the argument scope
is entered by a work-item, and last until the work-item exits the argument scope.

Recursive calls to a function will allocate multiple copies of the variables. This allows
full support for recursive functions and corresponds to the C++ notion of automatic
storage duration. (See the C++ specification ISO/IEC 14882:2011.) If a finalizer
determines there is no recursion, it can choose to allocate these statically and avoid
requiring a stack.

4.11 Rounding Modes
IEEE/ANSI Standard 754-2008 rounding modes are used for some floating-point
operations:

• up specifies that the operation should be rounded to positive infinity.

• down specifies that the operation should be rounded to negative infinity.

• zero specifies that the operation should be rounded to zero.

• near specifies that the operation should be rounded to the nearest representable
number and that ties should be broken by selecting the value with an even least
significant bit.

See 5.11 Floating-Point Arithmetic Operations (p. 95).

The conversion (cvt) operation also uses rounding modes: either integer or floating-
point rounding mode.

See 5.18 Conversion (cvt) Operation (p. 114).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 39

4.12 Registers
There are four types of registers:

• Control registers (c registers)

These hold a single bit value.

Compare operations write into control registers. Conditional branches test
control register values.

Control registers are similar to CPU condition codes.

Every HSAIL implementation supports eight control registers.

These registers are named $c0 to $c7.

• 32-bit registers (s registers)

These can hold signed integers, unsigned integers, or floating-point values.

Every HSAIL implementation supports 128 32-bit registers.

These registers are named $s0 to $s127.

• 64-bit registers (d registers)

These can hold signed long integers, unsigned long integers, or double float
values.

Every HSAIL implementation supports 64 64-bit registers.

These registers are named$d0 to $d63.

• 128-bit registers (q registers)

These hold packed data.

Every HSAIL implementation supports 32 128-bit registers.

These registers are named$q0 to $q31.

Registers follow these rules:

• Registers are not declared in HSAIL.

• All registers have function scope, so there is no way to pass an argument into a
function through a register.

• All registers are preserved at call sites.

• Every work-item has its own set of registers.

• No registers are shared between work-items.

• It is not possible to take the address of a register.

The s, d, and q registers in HSAIL share a single pool of resources. The finalizer will
report an error if the value (s + 2*d + 4*q) exceeds 128, where s, d, and q are the
allocated registers in an HSAIL program. Some architectures have an inverse
relationship between register usage and occupancy, and high-level compilers may
choose to target fewer than 128 registers to optimize for performance.

Registers are a limited resource in HSAIL, so high-level compilers are expected to
manage registers carefully.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

40 HSAIL Syntax and Semantics  

4.13 Constants
In text format, HSAIL supports three kinds of constants: integer, floating-point, and
packed.

In BRIG, the binary format, all constants are stored as bit strings.

HSAIL operations can specify the type and bit size for each input. Types include
integer, floating-point, packed, and bit string.

Constants can be used in data initialization directives and as operands to operations.

Figure 4–15 Constant Syntax Diagram

4.13.1 Integer Constants

Integer constants are 64 bits in size.

When used in a directive or in an operation, each integer constant is converted to the
appropriate size based on the operation type at its use.

Both data initialization directives and operations accept immediate values. In BRIG,
the size of the immediate value must be the number of bits needed by the operation
or directive that uses the immediate.

It is possible in text format to write immediate values that are bigger than needed.

For example, in both of the following operations, the 24 and 25 are unsigned 64-bit
values, but the operation expects 32-bit signed types:
global_s32 &someident[] = {24, 25};

add_s32 $s1, 24, 25;

It is not valid to use an integer constant in a directive or operation where a floating-
point value is expected.

An integer constant can be written in decimal, octal, or hexadecimal form. Both + and
- signs are allowed.

Note that the syntax follows C++ syntax.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 41

Figure 4–16 Integer Constant Syntax Diagram

Decimal constants are sign-extended to 64 bits.

A decimal constant (optionally signed) starts with a non-zero digit.
An octal constant starts with 0, as shown below:

Figure 4–17 Octal Constant Syntax Diagram

Octal and hexadecimal constants are zero-extended to 64 bits.

A hexadecimal constant starts with 0x or 0X, as shown below:

Figure 4–18 Hex Constant Syntax Diagram

Integer constants can be used as controls. For control-type data initializers and
operation operands, integer constants are interpreted as in C and C++. (That is, zero
values are False and non-zero values are True.)

In Extended Backus-Naur Form, TOKEN_INTEGER_CONSTANT is used for all three types
of constant.

4.13.2 Floating-Point Constants

Floating-point constants are represented as either 32-bit single-precision or 64-bit
double-precision values.

It is an error if a floating-point constant is used in an operation or directive that expects
a different size.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

42 HSAIL Syntax and Semantics  

It is an error to use a floating-point value where an integer or bit string value is
expected.

In Extended Backus-Naur Form, TOKEN_SINGLE_CONSTANT is used for 32-bit floating-
point constants and TOKEN_DOUBLE_CONSTANT for 64-bit floating-point constants.
Floating-point constants can be written with a decimal point or a signed exponent,
double-precision format followed by an optional float size suffix. Either the decimal
point, the exponent, or the suffix must be present, because a sequence of digits alone
is interpreted as an integer constant.

Floating-point constants can also be specified as hexadecimal constants in two ways.

One way is to specify IEEE/ANSI Standard 754-2008 binary interchange format. To
specify IEEE/ANSI Standard 754-2008 double-precision floating-point values, the
constant begins with 0d or 0D followed by 16 hexadecimal digits. To specify IEEE/ANSI
Standard 754-2008 single-precision floating-point values, the constant begins with 0f
or 0F followed by eight hexadecimal digits.

The second way to specify floating-point constants in hex notation uses the C99 format.
A C99 float constant in hex consists of a hexadecimal prefix, a significand part, a binary
exponent part, and an optional suffix. The significand part represents a rational
number and consists of a sequence of hexadecimal digits (the whole number) followed
by an optional fraction part (a period followed by a sequence of hexadecimal digits).
The binary exponent part is an optionally signed decimal integer that indicates the
power of 2. The significand is raised to that power of 2. The optional suffix indicates
the type: f or F indicates 32 bits, l or L indicates 64 bits. If the type is omitted, 64 bits is
used. A double like 12.345 can be written as 0d4028b0a3d70a3d71, or
0x1.8b0a3d70a3d71p+3.

Figure 4–19 Floating-Point Single Constant Syntax Diagram

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 43

Figure 4–20 Floating-Point Double Constant Syntax Diagram

Figure 4–21 hexFloatConstant Syntax Diagram

Figure 4–22 hexFrac Syntax Diagram

Figure 4–23 hexExp Syntax Diagram

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

44 HSAIL Syntax and Semantics  

Figure 4–24 hexSequence Syntax Diagram

4.13.3 Packed Constants

For information, see 4.15.2 Packed Constants (p. 49).

4.13.4 How Text Format Constants Are Converted to Bit String Constants

HSAIL assemblers convert from text format to binary format, changing each constant
to a bit string. The conversion rules are determined by the type of the constant
provided and by the type the operation wants.

See the following table, which describes how text format constants are converted to
bit string constants used in BRIG. What happens with the conversion depends on the
data type expected by the operation.

Table 4–1 Text Constants and Results of the Conversion

Kind of text format
constant provided

Data type of expected value

Signed/unsigned Bit Floating-point Packed

Integer constant Truncate Truncate Error Truncate

Floating-point
constant

Error Length-only rule Type and length rule Error

Packed constant Error Length-only rule Error Type and length rule

Truncation for an integer value in the text is as follows: the value is input as 64 bits,
then the length needed is compared to the size the operation needs.

If the operation needs 64 bits or fewer, the 64-bit value is truncated if necessary.

If the operation needs more than 64 bits, it is an error.

For example:
add_s32x2 ... 0xfffffffff; // 9 f's

The 9 f's is a 64-bit integer constant with 36 non-zero bits. The operation uses a packed
type s32x2 (two 32-bit signed integers), so the number of bits match identically in BRIG.
This would be stored as b64 0x0000000fffffffff.

It is not possible to provide an integer constant to a 128-bit data type. However, a
packed constant can be used for a 128-bit data type.

For example:
mov_b128 q1, 2; // illegal because integer constant is evaluated as 64 bits
 // and operation requires 128 bits.

These operations are legal:

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 45

mov_b128 q1, _u32x4(1, 2, 3, 4); // legal to use packed constant of same size
mov_b128 q1, _u64x2(1, 2); // legal to use packed constant of same size

If the operation was add_s8x4, four signed 8-bit elements, for a total of 32 bits, the
constant would be truncated and stored as b32 0xffffffff.

If the type was s32x4 (four elements each a signed 32-bit number), there would not be
enough data so there would be an error.

The type and length match rule is the following: the number of bits and the type must
be the same; otherwise this is an error.

The length-only rule is the following: the bits in the constant are used provided the
number of bits is the same. For example, mov_b32 ... 3.7f expects a 32-bit value.
The operation has a 32-bit floating-point constant 3.7f. Although the types do not match,
the lengths do match, so the hexadecimal value 3.7f is used.

4.14 Data Types

4.14.1 Base Data Types

HSAIL has four base data types, each of which supports a number of bit lengths. See
Table 4–2 (p. 46).

Table 4–2 Base Data Types

Type Description Possible lengths in bits

b Bit type 1, 8, 16, 32, 64, 128

s Signed integer type 8, 16, 32, 64

u Unsigned integer type 8, 16, 32, 64

f Floating-point type 16, 32, 64

A compound type is made up of a base data type and a length.

Most operations specify a single compound type, used for both destinations and
sources. However, the conversion operations (cvt, ftos, stof, and segmentp) specify
an additional compound type for the sources. The order is destination compound type
followed by the source compound type.

The finalizer might perform some checking on operand sizes.

4.14.2 Packed Data

Packed data allows multiple small values to be treated as a single object.

Packed data lengths are specified as an element size in bits followed by an x followed
by a count. For example, 8x4 indicates that there are four elements, each of size 8 bits.

See Table 4–3 (p. 47).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

46 HSAIL Syntax and Semantics  

Table 4–3 Packed Data Types and Possible Lengths

Type Description Lengths for 32-bit types Lengths for 64-bit types Lengths for 128-bit types

s Signed integer 8x4, 16x2 8x8, 16x4, 32x2 8x16, 16x8, 32x4, 64x2

u Unsigned integer 8x4, 16x2 8x8, 16x4, 32x2 8x16, 16x8, 32x4, 64x2

f Floating-point 16x2 16x4, 32x2 16x8, 32x4, 64x2

32-bit sizes are:

• 8x4 — four bytes; can be used with s and u types

• 16x2 — two shorts or half-floats; can be used with s, u, and f types

64-bit sizes are:

• 8x8 — eight bytes; can be used with s and u types

• 16x4 — four shorts or half-floats; can be used with s, u, and f types

• 32x2 — two integers or floats; can be used with s, u, and f types

128-bit sizes are:

• 8x16 — 16 bytes; can be used with s and u types

• 16x8 — eight shorts or half-floats; can be used with s or u, and f types

• 32x4 — four integers or floats; can be used with s, u, and f types

• 64x2 — two 64-bit integers or two doubles; can be used with s, u, and f types

4.14.3 Opaque Data Types

HSAIL also has the following opaque types (see 7.1.2 How Images Are Described (p.
148):

Table 4–4 Opaque Data Types

Type Description Length in bits

roimg Read-only image object 64

rwimg Read-write image object 64

samp Sampler object 64

An opaque type has a fixed size, but its representation is implementation-defined.

4.15 Packing Controls for Packed Data
Certain HSAIL operations operate on packed data. Packed data allows multiple small
values to be treated as a single object. For example, the u8x4 data type uses 32 bits to
hold four unsigned 8-bit bytes.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 47

Operations on packed data have both a data type and a packing control. The packing
control indicates how the operation selects elements.

See 4.14.2 Packed Data (p. 46).

The packing controls differ depending on whether an operation has one source input
or two.

See the tables below.

Table 4–5 Packing Controls for Operations With One Source Input

Control Description

p The single source is treated as packed. The operation is applied to each element separately.

p_sat Same as p, except that each result is saturated. (Cannot be used with floating-point values.)

s The lower element of the source is used. The result is written into the lower element of the
destination. The other bits of the destination are not modified.

s_sat Same as s, except that the result is saturated. (Cannot be used with floating-point values.)

Table 4–6 Packing Controls for Operations With Two Source Inputs

Control Description

pp Both sources are treated as packed. The operation is applied pairwise to corresponding elements
independently.

pp_sat Same as pp, except that each result is saturated. (Cannot be used with floating-point values.)

ps The first source operand is treated as packed and the lower element of the second source
operand is broadcast and used for all its element positions. The operation is applied
independently pairwise between the elements of the first packed source operand and the lower
element of the second packed operand. The result is stored in the corresponding element of the
packed destination operand.

ps_sat Same as ps, except that each result is saturated. (Cannot be used with floating-point values.)

sp The lower element of the first source operand is broadcast and used for all its element positions,
and the second source operand is treated as packed. The operation is applied independently
pairwise between the lower element of the first packed operand and the elements of the second
packed operand. The result is stored in the corresponding element of the packed destination
operand.

sp_sat Same as sp, except that each result is saturated. (Cannot be used with floating-point values.)

ss The lower element of both sources is used. The result is written into the lower element of the
destination. The other bits of the destination are not modified.

ss_sat Same as ss, except that the result is saturated. (Cannot be used with floating-point values.)

4.15.1 Ranges

For all packing controls, the following applies:

• For u8x4 and u8x8, the range of an element is 0 to 255.

• For s8x4 and s8x8, the range of an element is −128 to + 127.

• For u16x2 and u16x4, the range of an element is 0 to 65536.

• For s16x2 and s16x4, the range of an element is −32768 to 32767.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

48 HSAIL Syntax and Semantics  

For packing controls with the _sat suffix, the following applies:

• If the result value is larger than the range of an element, it is set to the maximum
representable value.

• If the result value is less than the range of an element, it is set to the minimum
representable value.

4.15.2 Packed Constants

HSAIL provides a simple notation for writing packed constant values: an operand that
consists of an underscore (_) followed by a packed type and length followed by a
parenthesized list of signed values is converted to a single packed constant.

For s and u types, the values must be integer. If a value is too large to fit in the format,
the lower-order bits are used.

For f types, the values must be floating-point. The floating-point constant is read as
f64 and converted to the expected size using convert to nearest.

In the following examples, each pair of lines generates the same constant value:
add_pp_s16x2 $s1, $s2, _s16x2(-23,56);
add_pp_s16x2 $s1, $s2, 0xffe90038;

add_pp_u16x2 $s1, $s2, _u16x2(23,56);
add_pp_u16x2 $s1, $s2, 0x170038;

add_pp_s16x4 $d1, $d2, _s16x4(23,56,34,10);
add_pp_s16x4 $d1, $d2, 0x1700380022000a;

add_pp_u16x4 $d1, $d2, _u16x4(1,0,1,0);
add_pp_u16x4 $d1, $d2, 0x1000000010000;

add_pp_s8x4 $s1, $s2, _s8x4(23,56,34,10);
add_pp_s8x4 $s1, $s2, 0x1738220a;

add_pp_u8x4 $s1, $s2, _u8x4(1,0,1,0);
add_pp_u8x4 $s1, $s2, 0x1000100;

add_pp_s8x8 $d1, $d2, _s8x8(23,56,34,10,0,0,0,0);
add_pp_s8x8 $d1, $d2, 1673124687913156608;

add_pp_s8x8 $d1, $d2, _s8x8(23,56,34,10,0,0,0,0);
add_pp_s8x8 $d1, $d2, 0x1738220a00000000;

add_pp_f32x2 $d1, $d2, _f32x2(2.0, 1.0);
add_pp_f32x2 $d1, $d2, 0x3f80000040000000;

4.15.3 Examples

The following example does four separate 8-bit signed adds:
add_pp_s8x4 $s1, $s2, $s3;

s1 = the logical OR of:
s2[0-7] + s3[0-7]
s2[8-15] + s3[8-15]
s2[16-23] + s3[16-23]
s2[24-31] + s3[24-31]

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 49

The following example does four separate signed adds, adding the lower byte of $s3
(bits 0-7) to each of the four bytes in $s2:
add_ps_s8x4 $s1, $s2, $s3;

4.16 Subword Sizes
The b8, b16, s8, s16, u8, and u16 types are allowed only in loads/stores and
conversions.

4.17 Operands
HSAIL is a classic load-store machine, with most ALU operands being either in
registers or immediate values. In addition, there are several other kinds of operands.

The operation specifies the valid kind of each operand using these rules:

• A source operand and a destination operand can be a register. The rules for
register operands are described below.

• A source operand can be an immediate. Immediate values can be either a
constant (see 4.13 Constants (p. 41)) or WAVESIZE (see 2.6.2 Wavefront Size (p.
12)).

• Memory, image, segment checking, segment conversion, and lda operations
take an address expression as a source operand (see 4.18 Address Expressions
(p. 52)).

• Memory, image, and some copy (move) operations allow a vector register as
source and destination operands. These comprise a list of registers (see 4.19
Vector Operands (p. 53)).

• Branch operations can take a label and list of labels as a source operand (see
Chapter 8 Branch Operations (p. 171)).

• Call operations can take a function identifier, list of function identifiers, and
signature identifier as a source operand (see Chapter 11 Operations Related to
Functions (p. 205)).

The source operands are usually denoted in the operation descriptions by the names
src0, src1, src2, and so forth.

The destination operand of an operation must be a register. It is denoted in the
operation descriptions by the name dest. A destination operand can also be a vector
register, in which case it is denoted as a list of registers with names dest0, dest1, and
so forth.

4.17.1 Operand Compound Type

Register, immediate, and address expression operands have an associated compound
type (see 4.14 Data Types (p. 46)). This defines the size and representation of the value
provided by the source operand or stored in the destination operand.

For most operations, the compound type used is the operation's compound type.
However, some operations have two compound types, the first for the destination

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

50 HSAIL Syntax and Semantics  

operand and the second for the source operands. In addition, for some operations,
certain operands have a fixed compound type defined by the operation.

For address expressions, the compound type refers to the value in memory, not the
compound type of the address, which is always u32 or u64 according to the address
size (see Table 2–3 (p. 20)).

For vector registers, the compound type applies to each register, and the rules for
register operands below apply to each individual register. The individual registers do
not need to be different for source operands, but do need to be different for destination
operands.

The rules for converting constant values to the source operand compound type are
given in 4.13.4 How Text Format Constants Are Converted to Bit String Constants (p.
45).

WAVESIZE is allowed only if the source operand is an integer compound type.

4.17.2 Rules for Source Operand Registers

The following rules apply to source operand registers:

• If the source operand compound type is an integer type (s and u), bit type (b),
f32, f64, or a packed type, roimg, rwimg, or samp, the source operand register
must match the size of its compound type (with the exception of the cvt and st
operations described below).

• If the source operand of a cvt operation has a compound type of b1 or has an
integer type, or the source operand containing the value being stored by a st
operation has an integer type: the register must be at least the size of its operand
compound type. If it is larger, then the size of the compound type dictates the
number of least significant bits of the register that are used.

• If the source operand is the compound type of f16, then it must be an s register.
The s register representation of f16 is implementation-defined and might not
match the memory representation (see 4.21 Floating-Point Numbers (p. 54)), so
care should be taken to use operations that correctly convert to and from
register representation if arithmetic is to be performed: ld, st, pack, and
unpack.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 51

4.17.3 Rules for Destination Operand Registers

The following rules apply to destination operand registers:

• If the destination operand compound type is an integer type (s and u), bit type
(b), f32, f64, or a packed type, roimg, rwimg, or samp, the destination operand
register must match the size of its compound type (with the exception of the
cvt and ld operations described below).

• If the destination operand of a cvt operation has a compound type of b1 or has
an integer type, or the destination operand of an ld operation has an integer
type: the register must be at least the size of its operand compound type. If it is
larger, then the operation is performed in the size of the operand compound
type. The result is then zero-extended for b (for cvt_b1) and u types, and sign-
extended for s types, to the size of the destination register. For example, when
an ld_u16 operation has a d (64-bit) destination register, then a 16-bit value is
loaded from memory, zero-extended to 64 bits, and stored in the d register.

• If the destination operand is the compound type of f16, then it must be an s
register. The s register representation of f16 is implementation-defined and
might not match the memory representation (see 4.21 Floating-Point Numbers
(p. 54)). The ld and unpack operations will convert the source value from the
memory representation of f16 into the s register representation. All other
operations will operate on the s register representation of f16. Despite using an
s register, an f16 value is not converted to an f32 value: the cvt operation must
be used to explicitly perform the conversion. (Note that packed f16, such as
f16x2, is not the same type as f16, and the packed components will be operated
on using the memory representation of f16.)

If it is necessary to transfer an integer value in a d register into an s register, or vice
versa, the cvt operation must be used to do the appropriate truncation or zero/sign
extension.

4.18 Address Expressions
Most variables have two addresses:

• Flat address

• Segment address

A flat address is a general address that can be used to address any HSAIL memory.
Flat addresses are in bytes.

A segment address is an offset within the segment in bytes.

If a segment is used in a load or store, the address is treated as a segment address.

Address expressions consist of one of the following:

• A name (file, kernel, function, or argument scope) in square brackets

• An address in square brackets

• A name in square brackets followed by an address in square brackets

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

52 HSAIL Syntax and Semantics  

An address is one of the following:

• A register

• A constant

• A register + constant

• A register − constant

For information about how to declare an identifier, see 4.22 Declaring and Defining
Identifiers (p. 55).

Addresses are always in bytes. For information about how addresses are formed from
an address expression, see 6.1.1 How Addresses Are Formed (p. 121).

Some examples of addresses are:
global_f32 %g1[10]; // allocate an array in a global segment
group_f32 %x[10]; // allocate an array in a group segment
ld_global_f32 $s1, [%g1][0]; // the [0] is optional
ld_global_f32 $s2, [%g1][2];
ld_global_u32 $s3, [%g1][$s2]; // read the float bits as an unsigned integer
ld_global_u32 $s4, [%g1][$s2+4];
ld_global_u32 $s5, [100]; // read from absolute flat address
ld_group_f32 $s3, [%x][$s2]; // segment-relative
ld_group_f16 $s5, [100]; // read 16 bits at absolute offset 100

See 6.2 Load (ld) Operation (p. 124).

4.19 Vector Operands
Several operations support vector operands.

Both destination and source vector operands are written as a comma-separated list of
registers enclosed in parentheses. A v2 operand contains two registers, a v3 operand
contains three registers, and a v4 operand contains four registers.

The registers in the list must be the same size: either all c registers, all s registers, or
all d registers. q registers cannot appear in a vector operand.

In BRIG, the type of the vector operand is the type of each register (see 4.17 Operands
(p. 50)).

In a vector operand used as a destination, it is not valid to repeat a register.

Loads and stores with vector operands can be used to implement loading and storing
of contiguous multiple bytes of memory, which can improve memory performance.

It is not valid to omit a register from the list.

Examples:
group_u32 %x;
readonly_s32 %tbl[256];

ld_group_u16 $s0, [%x]; // via offset
ld_group_u32 $s0, [%x];
ld_group_f32 $s2, [%x][0]; // treat result as floating-point

ld_readonly_v4_f32 ($s0,$s3,$s1,$s2), [%tbl];
ld_readonly_s32 $s1, [%tbl][12];
ld_width(all)_readonly_v4_f32 ($s0,$s3,$s9,$s1),
 [%tbl][2]; // broadcast form
ld_v2_f32 ($s9,$s2), [$s1+3];

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 53

See 6.2 Load (ld) Operation (p. 124).

4.20 Labels
Labels consist of an at sign (@) followed by the name of the identifier. Label definitions
consist of a label followed by a colon (:).

Labels cannot be used in any operations except brn, cbr, and ldc.

Labels cannot appear in an address expression.

Labels can be used in global and readonly variable initializers.

4.21 Floating-Point Numbers
Floating-point data is stored in binary format using the rules of IEEE/ANSI Standard
754-2008:

• An f16 number is stored in memory as 1 bit of sign, 5 bits of exponent, and 10
bits of mantissa. The exponent is biased with an excess value of 15. The
representation of an f16 value stored in an s register is implementation-defined
and need not match the memory representation. For example, it is allowed to
use all 32 bits of the s register.

The IEEE/ANSI Standard 754-2008 precision requirements for f16 are a
minimum requirement, and register operations may be performed at greater
precision and greater range, only converting to the f16 memory representation
when stored. Therefore, f16 results are not required to be bit-reproducible
across different HSA implementations.

The conversion between memory representation and register representation
might lead to unexpected results. For example, if the fract operation is
performed on an s register and the result stored into memory, the memory
value might have the value 1.0 due to the rounding from the register
representation to the memory representation.

• An f32 number is stored in memory and in an s register as 1 bit of sign, 8 bits of
exponent, and 23 bits of mantissa. The exponent is biased with an excess value
of 127.

• An f64 number is stored in memory and in a d register as 1 bit of sign, 11 bits of
exponent, and 52 bits of mantissa. The exponent is biased with an excess value
of 1023.

In all cases, if the exponent is all 1's and the mantissa is not 0, the number is a NaN.

If the exponent is all 1's and the mantissa is 0, then the value is either Infinity (sign ==
0) or −Infinity (sign == 1).

There are two representations for 0: positive zero has all bits 0; negative zero has a 1
in the sign bit and all other bits 0.

The first bit of the mantissa is used to distinguish between signaling NaNs (first bit 0)
and quiet Nans (first bit 1).

Signaling NaNs are never the result of arithmetic operations.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

54 HSAIL Syntax and Semantics  

The remaining bits of the mantissa of a NaN can be used to carry a payload
(information about what caused the NaN).

The sign of a NaN has no meaning, but it can be predictable in some circumstances.

HSAIL programs can use hex formats to indicate the exact bit pattern to be used for a
floating-point constant.

Conversions to floating-point that are beyond the range of floating-point numbers are
represented with the maximum floating-point value (IEEE/ANSI Standard 754-2008 Inf)
for f16, f32, and f64.

In the Full profile, subnormal values are only flushed to zero when requested with the
ftz modifier. In the Base profile, all operations that support the ftz modifier must
specify it, and will always flush subnormal values to zero. See 17.2 Profile-Specific
Requirements (p. 242).

4.22 Declaring and Defining Identifiers
For a description of identifiers, see 4.8 Identifiers (p. 36).

A declaration establishes the name and characteristics of an identifier.

A definition declares the identifier, allocates storage, and for some segments may
optionally initialize the storage.

If the same object is both declared and defined, the object must have the same
properties. If the object is an array, the size of the array must be specified in the
definition but can be omitted in the declaration.

An optional initializer can appear on a definition but not on a declaration.

Figure 4–25 Initializable Declaration or Definition Syntax Diagram

An initializable address can be in one of the following segments:

• Global

• Readonly

Figure 4–26 Uninitializable Declaration or Definition Syntax Diagram

An uninitializable address can be in one of the following segments:

• Group

• Private

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 55

• Kernarg

• Spill

• Arg

The data type ID can be one of the data types described in 4.14 Data Types (p. 46) (except
for b1).

A definition determines the following properties of an identifier:

• Scope — The section of program text where the identifier is visible and can be
used.

• Segment — The memory segment that will be used to hold the object.

• BaseType — How the bit pattern in storage is interpreted.

• Size — The number of bytes of storage needed to hold the identifier.

• Initializer — The initial value of the storage.

A variable declaration describes both the variable's compound type and its segment.
In addition to scalars, there is support for aggregate objects such as arrays.

One or more optional type qualifiers can be specified:

• const

The variable cannot be written to after the kernel starts execution. Only global
and readonly segment variable definitions can be marked const. (Readonly
segment variables are implicitly const so they do not need to be marked const.)

Memory for const variables remains constant during the execution of a kernel.

The variable should not be modified by stores or atomic operations. It is an error
to use a store or atomic operation with a const variable. It is undefined if
implementations will detect stores or atomic operations to const variables.

The finalizer might place a const variable in specialized read-only caches.

• align n

The storage for the variable must be aligned on an address that is an integer
multiple of n. Valid values of n are 1, 2, 4, 8, and 16.

For arrays, alignment specifies the address alignment of the starting address of
the entire array, not the alignment of individual elements.

Without an align qualifier, the variable will be naturally aligned. That is, the
address assigned to the variable will be a multiple of the variable's base type
length.

Packed data types are naturally aligned to the size of the entire packed type (not
the size of the each element). For example, the s32x4 packed type (four 32-bit
integers) is naturally aligned to a 128-bit boundary.

If an alignment is specified, it must be equal to or greater than the variable's
natural alignment. Thus, global_f64 x[10] must be aligned on a 64-bit (8-byte)
boundary. For example, align 8 global_f64 x[10] is valid, but smaller values
of n are not valid.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

56 HSAIL Syntax and Semantics  

• extern

The variable is being declared and not defined. Its address will be allocated by a
definition of the same variable, which can be in this or another compilation unit.
See 4.23.1 External Linkage (p. 60).

• static

The variable is defined in the current compilation unit and cannot be used to
satisfy an extern declaration in another compilation unit. See 4.23.2 Static
Linkage (p. 60).

The supported segments are:

• Global and readonly

The storage for the variable can be accessed by all work-items in the grid.

Declarations for global can appear either inside or outside of a kernel or
function. Such variables that appear outside of a kernel or function have scope
from the point of declaration until the end of the compilation unit. Those defined
inside a kernel or function have scope from the point of declaration to the end
of the kernel or function code block (even if declared in a nested argument
scope).

• Group

The storage for the variable can be accessed by all work-items in a work-group,
but not by work-items in other work-groups. Each work-group will get an
independent copy of any variable assigned to the group segment.

Declarations for group can appear either inside or outside of a kernel or function.
Such variables that appear outside of a kernel or function have scope from the
point of declaration until the end of the compilation unit. Those defined inside a
kernel or function have scope from the point of declaration to the end of the
kernel or function code block (even if declared in a nested argument scope).

• Private

The storage for the variable is accessible only to one work-item and is not
accessible to other work-items.

Declarations for private can appear either inside or outside of a kernel or
function. Such variables that appear outside of a kernel or function have scope
from the point of declaration until the end of the compilation unit. Those defined
inside a kernel or function have scope from the point of declaration to the end
of the kernel or function code block (even if declared in a nested argument
scope).

• Kernarg

The value of the variable can be accessed by all work-items in the grid. It is a
formal argument of the kernel. The finalizer might use the type information to
better allocate registers.

Declarations for kernarg must be in a kernel argument list. Such variables have
scope from the point of declaration until the end of the kernel code block.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 57

• Spill

The storage for the variable is accessible only to one work-item and is not
accessible to other work-items. Such variables are used to save and restore
registers.

Declarations for spill must appear inside a kernel or function. Such variables
have scope from the point of declaration until the end of the kernel or function
code block (even if declared in a nested argument scope).

• Arg

The storage for the variable is accessible only to one work-item and is not
accessible to other work-items. Such variables are used to pass per work-item
arguments to functions.

Declarations for arg must appear inside an argument scope within a kernel,
function, or within a function signature. Such variables that appear inside an
argument scope have scope from the point of declaration until the end of the
argument scope. Those defined inside a function signature of a function
declaration have scope from the point of declaration to the end of the function
signature. Those defined inside a function signature of a function definition have
scope from the point of declaration to the end of the function code block.

See 4.10 Storage Duration (p. 38) for a description of when storage is allocated for
variables.

Here is an example:
function &fib (arg_s32 %r) (arg_s32 %n)
{
 ld_arg_s32 $s1, [%n];
 cmp_lt_b1_s32 $c1, $s1, 3; // if n < 3 go to return
 cbr $c1, @return;
 private_s32 %p; // allocate a private variable
 // to hold the partial result
 {
 arg_s32 %nm2;
 arg_s32 %res;
 sub_s32 $s2, $s1, 2; // compute fib (n-2)
 st_arg_s32 $s2, [%nm2];
 call &fib (%res)(%nm2);
 ld_arg_s32 $s2, [%res];
 }
 st_private_s32 $s2, [%p]; // save the result in p
 {
 arg_s32 %nm2;
 arg_s32 %res;
 sub_s32 $s2, $s1, 1; // compute fib (n-1)
 st_arg_s32 $s2, [%nm2];
 call &fib (%res)(%nm2);
 ld_arg_u32 $s2, [%res];
 }
 ld_private_u32 $s3, [%p]; // add in the saved result
 add_u32 $s2, $s2, $s3;
 st_arg_s32 $s2, [%r];
@return: ret;
};

4.22.1 Array Declarations

Array declarations are provided to allow the high-level compiler to reserve space. To
declare an array, the variable name is followed with dimensional declarations. The
size of the dimension is either a constant or is left empty.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

58 HSAIL Syntax and Semantics  

Note that the array declaration is similar to C++.

The size of the array specifies how many elements should be reserved. Each element
is aligned on the base type length, so no padding is necessary.

Variable definitions in the global and readonly segments can optionally specify an
initial value. The variable name is followed by an equals (=) sign and the initial value
or values for the variable. A scalar takes a single value, while vectors take a list of
values inside of curly braces. For the initialization of image and sampler objects, see
7.1.4 Image Objects (p. 150) and 7.1.7 Sampler Objects (p. 156).

The values are converted to the size needed to fit into the destination.

If an immediate value is not the same type or size as the element, then the rules in
Table 4–1 (p. 45) apply. For example, global_u32 &x = {3.0f} initializes the identifier
x to the 32-bit value 0x40400000.

It is only possible to initialize the global and readonly segments.

Label names appearing in initializers represent the address of the next operation
following the label. This can be used to initialize a jump table to be used with indirect
jumps. Label addresses should be of type u or s and of size 32.

Variables that hold addresses of variables and code labels should be of type u or s and
of size 32 or 64.

The size of the array can be set by the length of the initialization list:
readonly_u32 &days[] = {31,28,31,30,31,30,31,31,30,31,30,31};

Note that this follows the C++ rules.

Only constant values and label names can appear in an initialization list. Values and
labels cannot be mixed in the same initialization list.

If there is no initializer, the value of the object is undefined. However, if some of the
elements are initialized, then the rest are initialized to zero.

For example:
global_u32 &x1[10]; // no initializer (values start
 // as undefined)
global_u32 &y1[10]= {1,2,3,4,5,6,7,8}; // elements 0,1,2,3,4,5,6,7
 // are initialized

Examples:
global_u32 &loc1;
global_f32 &bias[] = {-1.0, 1.0};
global_u8 &bg[4] = {0, 0, 0, 0};
const align 8 global_b8 &willholddouble [8] = {0,0,0,0,0,0,0,0};

The last formal argument of a function signature can be an array without a specified
size. The size passed is determined by the size specified by the arg definition of the
function call. See 10.5 Variadic Functions (p. 202).

4.23 Linkage: External, Static, and None
Linkage determines the rules that permit a name (function, kernel, or variable) to refer
to the same object as a name declared in another scope.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 59

HSAIL provides three types of linkage:

• External: The object denoted can also be referenced by the same name from
another scope in this or another compilation unit.

• Static: The object denoted can be referenced by the same name in another scope
within this compilation unit, but not from another compilation unit.

• None: The object denoted cannot be referenced by the same name in another
scope.

4.23.1 External Linkage

Under some conditions, a name of a function or variable in one compilation unit might
refer to an object with the same name defined in a different compilation unit. The two
names are linked together. Only one compilation unit is allowed to have a definition
for the name. In all other compilation units that refer to the same object, the name
must be a declaration marked extern. Objects that can be linked together in this way
are said to have external linkage.

A name can be both defined in a compilation unit and also declared as extern in the
same compilation unit.

For example:
extern function &foo ()(); // declaration: says it is coming or
 // is in another compilation unit
// ...

function &foo()(){ // definition (contains the body)

// ... the body

};

extern cannot appear on a definition.

A function declaration marked extern cannot have a body, because that would make
it a definition.

A variable marked extern is not defined, so it cannot have an initializer.

Only file scope global or readonly variables and function declarations can be marked
extern.

The finalizer does not allocate space for names marked extern.

By default, all definitions of names starting with an ampersand (&) in a compilation unit
are visible to other compilation units and have external linkage.

4.23.2 Static Linkage

A definition or declaration can have static linkage (marked static).

Only file scope global, readonly, global, and private variables and function
declarations and definitions can be marked static.

No definition or declaration can have both static and external linkage. If a definition
or declaration is marked static, then no other compilation name can use an extern
to refer to the same object.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

60 HSAIL Syntax and Semantics  

The name is not visible to any other compilation unit.

Static declarations must be defined in the current compilation unit.

4.23.3 None Linkage

Kernels have linkage none (neither external nor static and marked none in BRIG),
because they can only be accessed from a dispatch call.

Labels and variables in the spill, arg, or kernarg segment have linkage none and are
not visible to other compilation units.

Private and group variables defined inside a function or kernel have linkage none.

4.24 Dynamic Group Memory Allocation
Some developers like to write code using dynamically sized group memory. For
example, in the following code there are four arrays allocated to group memory, two
of known size and two of unknown size:
group_u32 dynamic[size]; // illegal as size not a constant value
group_u32 more_dynamic[size2]; // illegal as size not a constant value
group_u32 known[2];
group_u32 more_known[4];
kernel &k1 (kernarg_u32 size, kernarg_u32 size2){
 st_group_f32 1.0f, [dynamic][8];
 st_group_f32 2.0f, [more_dynamic];
...
}

Internally, group memory might be organized as:
start of group memory
offset 0, fixed
offset 8, more_fixed
offset 24, dynamic
offset ?, more_dynamic
end of group memory ?

The question marks indicate information that is not available at finalization time.

HSAIL does not support this sort of dynamically sized array because of two problems:

• The finalizer cannot emit code that addresses the array more_dynamic.

• The dispatch cannot launch the kernel because it does not know the amount of
group space required for a work-group.

In order to provide equivalent functionality, the HSAIL runtime library supports
dynamic allocation of group memory. Dynamic allocation of group memory uses these
steps:

1. The application declares the HSAIL kernel with additional arguments, which are
group segment addresses for the dynamically sized group memory, and uses
these to access the dynamically sized group memory.

2. The finalizer calculates the amount of group memory used by the kernel and
makes the information available as usual.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 61

3. The application computes the group segment address for each of the additional
kernel arguments by starting at the offset provided by the finalizer. The offset
can be rounded up to meet any alignment requirements.

4. The application dispatches the kernel using the group segment addresses it
computed, and specifies the amount of group memory as the sum of the amount
returned by the finalizer plus the amount required for the dynamic group
memory.

Using this mechanism, the previous example would be coded as follows:
group_u32 &known[2];
group_u32 &more_known[4];
kernel &k1 (kernarg_u32 %dynamic_ptr, kernarg_u32 %more_dynamic_ptr){
 ld_kernarg_u32 $s1, [%dynamic_ptr];
 ld_kernarg_u32 $s2, [%more_dynamic_ptr];
 st_group_f32 1.0f, [$s1 + 8];
 st_group_f32 2.0f, [$s2];
 //...
 };

4.25 Kernarg Segment
The kernarg segment is used to hold kernel arguments.

Arguments to a kernel are always constant, because all work-items get the same
values. Arguments to a kernel are read-only.

Kernarg variables can only be declared in the list of kernel formal arguments.

The finalizer might place kernarg variables in a specialized read-only cache.

The kernarg segment is typically written in memory by the agent that launches the
kernel, and then read by the ISA when the kernel executes. Some additional rules
apply so that the memory format of the kernarg segment is clearly specified:

• The size and layout of all kernel arguments can be determined by examining the
kernel signature.

• Arguments follow the natural alignment rules. Stricter alignment can be forced
with the align qualifier. For information about the align qualifier, see 4.22
Declaring and Defining Identifiers (p. 55).

• The base of the kernarg segment is always aligned to 16 bytes. Additionally,
implementations can choose to add padding bytes to the end of the kernarg
segment allocation to avoid false sharing conflicts.

• Arrays in the kernarg segment are passed by value. See 4.22.1 Array
Declarations (p. 58).

• Image objects are always 48 bytes in size and are passed by value.

• Sampler objects are always 32 bytes in size and are passed by value.

• Kernel arguments are stored left-to-right in increasing memory locations. For
example, the first kernel argument is stored at the kernarg base, the second is
stored at the kernarg base + sizeof(first kernarg) (and is then aligned based on
the type of the second argument), and so forth.

• HSA requires that the agent dispatching the command and the target HSA
component have the same endian format.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

62 HSAIL Syntax and Semantics  

In the following code, the load (ld) operation reads the contents of the address z into
the register $s1:

kernel &top (kernarg_u32 %z)
{
 ld_kernarg_u32 $s1, [%z]; // read z into $s1

//...

};

It is possible to obtain the address of z with an lda operation:

lda_kernarg_u64 $d2, [%z]; // get the 64-bit pointer to z (a segment address)

Such addresses must not be used in store operations.

For more information, see 6.2 Load (ld) Operation (p. 124) and 5.8 Copy (Move)
Operations (p. 83).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Syntax and Semantics 63

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

64 HSAIL Syntax and Semantics  

Chapter 5

Arithmetic Operations
This chapter describes the HSAIL arithmetic operations.

5.1 Overview of Arithmetic Operations
Unless stated otherwise, arithmetic operations expect all inputs to be in registers,
immediate values, or WAVESIZE (see 2.6.2 Wavefront Size (p. 12)), and to produce a
single result in a register (see 4.17 Operands (p. 50)).

Consider this operation:
max_s32 $s1, $s2, $s3;

In this case, the max operation is followed by a base type s and a length 32.

Next there is a destination operand s1.

Finally, there are zero or more source operands, in this case s2 and s3.

The type expands on the operation. For example, a max operation could be signed
integer, unsigned integer, or floating-point.

The length determines the size of the register used. In the descriptions of the
operations in this manual, a size n operation expects all input registers to be of length
n bits. For more information on the rules concerning operands, see 4.17 Operands (p.
50).

Consider this operation:
add_s32 $s5, $s0, $s1;

This operation adds two registers s0 and s1 and stores the result into the register s5.
However, it is possible that the result does not fit. An overflow occurs when an
arithmetic operation attempts to create a numeric value that is larger than the value
that can be represented. Integer overflow stores the least significant bits of the results.
Floating-point overflow follows the rules of the IEEE/ANSI Standard 754-2008 for
floating-point arithmetic.

5.2 Integer Arithmetic Operations
Integer arithmetic operations treat the data as signed (two's complement) or unsigned
data types of 32-bit or 64-bit lengths.

HSAIL supports packed versions of some integer arithmetic operations.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 65

5.2.1 Syntax

Table 5–1 Syntax for Integer Arithmetic Operations

Opcodes and Modifiers Operands

abs_sLength dest, src0

add_TypeLength dest, src0, src1

borrow_TypeLength dest, src0, src1

carry_TypeLength dest, src0, src1

div_TypeLength dest, src0, src1

max_TypeLength dest, src0, src1

min_TypeLength dest, src0, src1

mul_TypeLength dest, src0, src1

mulhi_TypeLength dest, src0, src1

neg_sLength dest, src0

rem_TypeLength dest, src0, src1

sub_TypeLength dest, src0, src1

Explanation of Modifiers (see Table 4–2 (p. 46))

Type: s, u

Length: 32, 64

Explanation of Operands

dest: Destination register.

src0, src1: Sources. Can be a register, immediate value, or WAVESIZE.

Exceptions (see Chapter 13 Exceptions (p. 219))

A divide by zero exception or an implementation-defined exception are allowed for div and rem. No other
exceptions are allowed.

Table 5–2 Syntax for Packed Versions of Integer Arithmetic Operations

Opcodes and Modifiers Operand

abs_Control_sLength dest, src0

add_Control_TypeLength dest, src0, src1

max_Control_TypeLength dest, src0, src1

min_Control_TypeLength dest, src0, src1

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

66 Arithmetic Operations  

Opcodes and Modifiers Operand

mul_Control_TypeLength dest, src0, src1

mulhi_Control_TypeLength dest, src0, src1

neg_Control_sLength dest, src0

sub_Control_TypeLength dest, src0, src1

Explanation of Modifiers (see 4.15 Packing Controls for Packed Data (p. 47))

Control for abs and neg: p or s.

Control for add, mul, and sub: pp, pp_sat, ps, ps_sat, sp, sp_sat, ss, or ss_sat.

Control for max, min, and mulhi: pp, ps, sp, or ss.

Type: s, u.

Length: 8x4, 8x8, 8x16, 16x2, 16x4, 16x8, 32x2, 32x4, or 64x2.
See 4.14.2 Packed Data (p. 46).

Explanation of Operands

dest: Destination register.

src0, src1: Sources. Can be a register or immediate value.

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.1.1 BRIG Syntax for Integer Arithmetic Operations (p. 301).

5.2.2 Description

abs
The abs operation computes the absolute value of the source src0 and stores the
result into the destination dest. There are no unsigned versions of abs, so only
abs_sLength is valid.

abs(−231) returns −231 for 32-bit operands. abs(−263) returns −263 for 64-bit
operands.

add
The add operation computes the sum of the two sources src0 and src1 and stores
the result into the destination dest. The add operation supports both signed and
unsigned forms to aid readers of the code, though both forms compute the same
result.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 67

div
The div operation divides source src0 by source src1 and stores the quotient in
destination dest.

The div operation follows the c99 model for signed division: the remainder has the
same sign as the dividend, and divide always truncates toward zero (−22/7 produces
−3). The result of integer divide with a divisor of zero is undefined, and it is
implementation-defined if: no exception is generated; a divide by zero exception is
generated; or some other implementation-defined exception is generated.

The result of dividing −231 for s32 types, or −263 for s64 types, by −1 is undefined, and
it is implementation-defined if: no exception is generated; or an implementation-
defined exception is generated.

rem
The rem operation divides source src0 by source src1 and stores the remainder in
destination dest.

The rem operation follows the c99 model for signed remainder: the remainder has
the same sign as the dividend, and divide always truncates toward zero (−22/7
produces −1). The result of integer remainder with a divisor of zero is undefined,
and it is implementation-defined if: no exception is generated; a divide by zero
exception is generated; or some other implementation-defined exception is
generated.

rem(−231, -1) returns 0 for s32 types. rem(−263, -1) returns 0 for s64 types.

max
The max operation computes the maximum of source src0 and source src1 and
stores the result into the destination dest.

min
The min operation computes the minimum of source src0 and source src1 and
stores the result into the destination dest.

mul
The mul operation produces the lower bits of the product. mul supports both signed
and unsigned forms to aid readers of the code, though both forms compute the
same result.

It is undefined what value is returned by mul(−231, -1) for 32-bit operands, and
mul(−263, -1) for 64-bit operands.

mulhi
mulhi_s32 produces the upper bits of the 64-bit unsigned product; mulhi_u32
produces the upper bits of the 64-bit unsigned product.

mulhi_s64 produces the upper bits of the 128-bit unsigned product; mulhi_u64
produces the upper bits of the 128-bit unsigned product.

For example: In the operation −1 x 1, the upper 32 bits of the signed integer product
are all 1's while the upper 32 bits of the unsigned product are all 0's.

Similarly, for packed operands M x N, the top M bits of each of the N signed or
unsigned products is placed in the packed M x N result.

To generate a 128-bit product from 64-bit sources, compilers can generate both 64-
bit half results using mul_u64/mul_s64 and mulhi_u64/mulhi_s64 and then
combine the partial results using a combine operation (see 5.8 Copy (Move)
Operations (p. 83)).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

68 Arithmetic Operations  

neg
The neg operation computes 0 minus source src0 and stores the result into the
destination dest. There are no unsigned versions of neg, so only neg_sLength is
valid.

neg(−231) returns −231 for 32-bit operands. neg(−263) returns −263 for 64-bit
operands.

sub
The sub operation subtracts source src1 from source src0 and places the result in
the destination dest.

The sub operation supports both signed and unsigned forms to aid readers of the
code, though both forms compute the same result.

carry
The carry operation adds the two sources src0 and src1. If the addition causes a
carry out of the most significant (leftmost) bit, it sets the destination dest to 1;
otherwise it sets the dest to 0.

The carry operation supports both signed and unsigned forms to aid readers of the
code, though both forms compute the same result.

borrow
The borrow operation subtracts source src1 from source src0. If the subtraction
requires a borrow into the most significant (leftmost) bit, it sets the destination
dest to 1; otherwise it sets the dest to 0.

The borrow operation supports both signed and unsigned forms to aid readers of
the code, though both forms compute the same result.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 69

Examples of Regular (Nonpacked) Operations

abs_s32 $s1, $s2;
abs_s64 $d1, $d2;

neg_s32 $s1, 100;
neg_s64 $d1, $d2;

add_s32 $s1, 42, $s2;
add_u32 $s1, $s2, 0x23;
add_s64 $d1, $d2, 23;
add_u64 $d1, 61, 0x233412349456;

div_s32 $s1, 100, 10;
div_u32 $s1, $s2, 0x23;
div_s64 $d1, $d2, 23;
div_u64 $d1, $d3, 0x233412349456;

max_s32 $s1, 100, 10;
max_u32 $s1, $s2, 0x23;
max_s64 $d1, $d2, 23;
max_u64 $d1, $d3, 0x233412349456;

min_s32 $s1, 100, 10;
min_u32 $s1, $s2, 0x23;
min_s64 $d1, $d2, 23;
min_u64 $d1, $d3, 0x233412349456;

mul_s32 $s1, 100, 10;
mul_u32 $s1, $s2, 0x23;
mul_s64 $d1, $d2, 23;
mul_u64 $d1, $d3, 0x233412349456;

mulhi_s32 $s1, $s3, $s3;
mulhi_u32 $s1, $s2, $s9;

rem_s32 $s1, 100, 10;
rem_u32 $s1, $s2, 0x23;
rem_s64 $d1, $d2, 23;
rem_u64 $d1, $d3, 0x233412349456;

sub_s32 $s1, 100, 10;
sub_u32 $s1, $s2, 0x23;
sub_s64 $d1, $d2, 23;
sub_u64 $d1, $d3, 0x233412349456;

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

70 Arithmetic Operations  

Examples of Packed Operations

abs_p_s8x4 $s1, $s2;
abs_p_f32x2 $d1, $d1;

neg_s_u8x4 $s1, $s2;
neg_s_sat_u8x4 $s1, $s2;

add_pp_sat_u16x2 $s1, $s0, $s3;
add_pp_sat_u16x4 $d1, $d0, $d3;

mul_pp_u16x4 $d1, $d0, $d3;
mulhi_pp_u8x8 $d1, $d3, $d4;

sub_sp_u8x8 $d1, $d0, $d3;

max_pp_u8x4 $s1, $s0, $s3;

min_pp_u8x4 $s1, $s0, $s3;

5.3 Integer Optimization Operation
Integer optimizations are intended to improve performance. High-level compilers
should attempt to generate these whenever possible.

See also 5.4 24-Bit Integer Optimization Operations (p. 72).

5.3.1 Syntax

Table 5–3 Syntax for Integer Optimization Operation

Opcode and Modifiers Operands

mad_TypeLength dest, src0, src1, src2

Explanation of Modifiers (see Table 4–2 (p. 46))

Type: s, u

Length: 32, 64

Explanation of Operands

dest: Destination register.

src0, src1, src2: Sources. Can be a register, immediate value, or WAVESIZE.

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 71

For BRIG syntax, see 19.10.1.2 BRIG Syntax for Integer Optimization Operation (p.
302).

5.3.2 Description

The integer mad (multiply add) operation multiplies source src0 times source src1 and
then adds source src2. The least significant bits of the result are then stored in the
destination dest.

Integer mad supports both signed and unsigned forms to aid readers of the code,
though both forms compute the same result.

The math is: ((s0 * s1) + s2) & ((1 << length) – 1).

Examples

mad_s32 $s1, $s2, $s3, $s5;
mad_s64 $d1, $d2, $d3, $d2;
mad_u32 $s1, $s2, $s3, $s3;
mad_u64 $d1, $d2, $d3, $d1;

5.4 24-Bit Integer Optimization Operations
Integer optimizations are intended to improve performance. High-level compilers
should attempt to generate these whenever possible. These operations operate on 24-
bit integer data held in 32-bit registers.

For s types, the 24 least significant bits of the source values are treated as a two's
complement signed value. The result is computed as a 48-bit two's complement value,
and is undefined if the two's complement 32-bit source values are outside the range
of −223..223−1. This allows an implementation to use equivalent 32-bit signed operations
if it does not support native 24-bit signed operations.

For u types, the 24 least significant bits of the source values are treated as an unsigned
value. The result is computed as a 48-bit unsigned value, and is undefined if the
unsigned 32-bit source values are outside the range of 0..224−1. This allows an
implementation to use equivalent 32-bit unsigned operations if it does not support
native 24-bit unsigned operations.

See also 5.3 Integer Optimization Operation (p. 71).

5.4.1 Syntax

Table 5–4 Syntax for 24-Bit Integer Optimization Operations

Opcode and Modifiers Operands

mad24_TypeLength dest, src0, src1, src2

mad24hi_TypeLength dest, src0, src1, src2

mul24_TypeLength dest, src0, src1

mul24hi_TypeLength dest, src0, src1

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

72 Arithmetic Operations  

Explanation of Modifiers (see Table 4–2 (p. 46))

Type: s, u

Length: 32

Explanation of Operands

dest: Destination register.

src0, src1, src2: Sources: Can be a register, immediate value, or WAVESIZE.

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.1.3 BRIG Syntax for 24-Bit Integer Optimization Operations
(p. 302).

5.4.2 Description

mad24
Computes the 48-bit product of the two 24-bit integer sources src0 and src1. It then
adds the 32 bits of src2 to the result and stores the least significant 32 bits of the
result in the destination.

mad24hi
Computes mul24hi(src0, src1) + src2 and stores the least significant 32 bits of
the result in the destination.

mul24
Computes the 48-bit product of the two 24-bit integer sources src0 and src1 and
stores the least significant 32 bits of the result in the destination.

mul24hi
Uses the same computation as mul24, but stores the most significant 16 bits of the
48-bit product in the destination. s32 sign-extends the result and u32 zero-extends
the result.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 73

Examples

mad24_s32 $s1, $s2, -12, 23;
mad24_u32 $s1, $s2, 12, 2;

mad24hi_s32 $s1, $s2, -12, 23;
mad24hi_u32 $s1, $s2, 12, 2;

mul24_s32 $s1, $s2, -12;
mul24_u32 $s1, $s2, 12;

mul24hi_s32 $s1, $s2, -12;
mul24hi_u32 $s1, $s2, 12;

5.5 Integer Shift Operations
These operations perform right or left shifts of bits.

These operations have a packed form.

5.5.1 Syntax

Table 5–5 Syntax for Integer Shift Operations

Opcode and Modifiers Operands

shl_TypeLength dest, src0, src1

shr_TypeLength dest, src0, src1

Explanation of Modifiers (see Table 4–2 (p. 46))

Type: s, u

Length: For regular form: 32, 64; for packed form: 8x4, 8x8, 16x2, 16x4, 32x2, 32x4, or 64x2.

Explanation of Operands

dest: Destination register.

src0, src1: Sources. Can be a register, immediate value, or WAVESIZE. Regardless of TypeLength, src1 is
always u32.

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.1.4 BRIG Syntax for Integer Shift Operations (p. 302).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

74 Arithmetic Operations  

5.5.2 Description for Standard Form

If the Length is 32, then the amount to shift ignores all but the lower five bits of src1.
For example, shifts of 33 and 1 are treated identically.

If the Length is 64, then the amount to shift ignores all but the lower six bits of src1.

shl
Shifts source src0 left by the least significant bits of source src1 and stores the
result into the destination dest. This is the left arithmetic shift, adding zeros to the
least significant bits. The value in src1 is treated as unsigned.

The shl operation supports both signed and unsigned forms to aid readers of the
code, though both forms compute the same result.

shr_s
Shifts source src0 right by the least significant bits of source src1 and stores the
result into the destination dest. This is the right arithmetic shift, filling the exposed
positions (the most significant bits) with the sign of src0. The value in src1 is treated
as unsigned.

shr_u
Shifts source src0 right by the least significant bits of source src1 and stores the
result into the destination dest. This is the right logical shift, filling the exposed
positions (the most significant bits) with zeros. The value in src1 is treated as
unsigned.

Both shr_s and shr_u produce the same result if src0 is non-negative or if the least
significant bits of the shift amount (src1) is zero.

5.5.3 Description for Packed Form

Each element in src0 is shifted by the same amount. The amount is in src1.

If the element size is 8 (that is, the Length starts with 8x), the shift amount is specified
in the least significant 3 bits of src1.

If the element size is 16 (that is, the Length starts with 16x), the shift amount is specified
in the least significant 4 bits of src1.

If the element size is 32 (that is, the Length starts with 32x), the shift amount is specified
in the least significant 5 bits of src1.

If the element size is 64 (that is, the Length starts with 64x), the shift amount is specified
in the least significant 6 bits of src1.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 75

Examples

shl_u32 $s1, $s2, 2;
shl_u64 $d1, $d2, 2;
shl_s32 $s1, $s2, 2;
shl_s64 $d1, $d2, 2;

shr_u32 $s1, $s2, 2;
shr_u64 $d1, $d2, 2;
shr_s32 $s1, $s2, 2;
shr_s64 $d1, $d2, 2;

shl_u8x8 $d0, $d1, 2;
shl_u8x4 $s1, $s2, 2;
shl_u8x8 $d1, $d2, 1;
shr_u8x4 $s1, $s2, 1;
shr_u8x8 $d1, $d2, 2;

5.6 Individual Bit Operations
It is often useful to consider a 32-bit or 64-bit register as 32 or 64 individual bits and to
perform operations simultaneously on each of the bits of two sources.

5.6.1 Syntax

Table 5–6 Syntax for Individual Bit Operations

Opcode and Modifiers Operands

and_TypeLength dest, src0, src1

or_TypeLength dest, src0, src1

xor_TypeLength dest, src0, src1

not_TypeLength dest, src0

popcount_u32_TypeLength dest, src0

Explanation of Modifiers (see Table 4–2 (p. 46))

Type: b

Length: 1, 32, 64; popcount does not support b1.

Explanation of Operands

dest: Destination register.

src0, src1: Sources. Can be a register, immediate value, or WAVESIZE.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

76 Arithmetic Operations  

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.1.5 BRIG Syntax for Individual Bit Operations (p. 303).

5.6.2 Description

The b1 form is used with control (c) register sources. It can only be used with the
operations and, or, xor, and not.

and
Performs the bitwise AND operation on the two sources src0 and src1 and places
the result in the destination dest. The and operation can be applied to 1-, 32-, and
64-bit values.

or
Performs the bitwise OR operation on the two sources src0 and src1 and places
the result in the destination dest. The or operation can be applied to 1-, 32-, and 64-
bit values.

xor
Performs the bitwise XOR operation on the two sources src0 and src1 and places
the result in the destination dest. The xor operation can be applied to 1-, 32-, and
64-bit values.

not
Performs the bitwise NOT operation on the source src0 and places the result in the
destination dest. The not operation can be applied to 1-, 32-, and 64-bit values.

popcount
Counts the number of 1 bits in src0. Only b32 and b64 inputs are supported. The
Type and Length fields specify the type and size of src0. dest has a fixed compound
type of u32 and must be a 32-bit register.

See this pseudocode:
int popcount(unsigned int a)
{
 int d = 0;
 while (a != 0) {
 if (a & 1) d++;
 a >>= 1;
 }
 return d;
}

See also Table 5–7 (p. 78).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 77

Table 5–7 Inputs and Results for popcount Operation

Input popcount

00000000 0

00ffffff 24

7fffffff 31

01ffffff 25

ffffffff 32

ffff0f00 20

Examples

and_b1 $c0, $c2, $c3;
and_b32 $s0, $s2, $s3;
and_b64 $d0, $d1, $d2;

or_b1 $c0, $c2, $c3;
or_b32 $s0, $s2, $s3;
or_b64 $d0, $d1, $d2;

xor_b1 $c0, $c2, $c3;
xor_b32 $s0, $s2, $s3;
xor_b64 $d0, $d1, $d2;

not_b1 $c1, $c2;
not_b32 $s0, $s2;
not_b64 $d0, $d1;

popcount_u32_b32 $s1, $s2;
popcount_u32_b64 $s1, $d2;

5.7 Bit String Operations
A common operation on elements is packing or unpacking a bit string. HSAIL provides
bit string operations to access bit and byte strings within elements.

5.7.1 Syntax

Table 5–8 Syntax for Bit String Operations

Opcode and Modifiers Operands

bitextract_TypeLength dest, src0, src1, src2

bitinsert_TypeLength dest, src0, src1, src2, src3

bitmask_TypeLength dest, src0, src1

bitrev_TypeLength dest, src0

bitselect_TypeLength dest, src0, src1, src2

firstbit_u32_TypeLength dest, src0

lastbit_u32_TypeLength dest, src0

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

78 Arithmetic Operations  

Explanation of Modifiers (see Table 4–2 (p. 46))

Type: b for bitmask, bitrev, and bitselect; s and u for bitextract, bitinsert, firstbit, and lastbit.

Length: 32, 64.

Explanation of Operands

dest: Destination register. Must match the size of Length.

src0, src1, src2: Sources. Can be a register, immediate value, or WAVESIZE.

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.1.6 BRIG Syntax for Bit String Operations (p. 303).

5.7.2 Description

bitextract
Extracts a range of bits.

src0 and dest are treated as the TypeLength of the operation. src1 and src2 are
treated as u32.

The least significant 5 (for 32-bit) or 6 (for 64-bit) bits of src1 specify bit offset from
bit 0. The least significant 5 (for 32-bit) or 6 (for 64-bit) of src2 specify a bit-field width.
src0 specifies the replacement bits.

The bits are extracted from src0 starting at bit position offset and extending for
width bits and placed into the destination dest.

The result is undefined if the bit offset plus bit-field width is greater than the dest
operand length.

bitextract_s sign-extends the most significant bit of the extracted bit field.
bitextract_u zero-extends the extracted bit field.

offset = src1 & (operation.length == 32 ? 31 : 63);
width = src2 & (operation.length == 32 ? 31 : 63);
if (width == 0) {
 dest = 0;
} else {
 dest = (src0 << (operation.length - width - offset))
 >> (operation.length - width);
 // signed or unsigned >>, depending on operation.type
}

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 79

bitinsert
Replaces a range of bits.

src0, src1, and dest are treated as the TypeLength of the operation. src2 and
src3 are treated as u32.

The least significant 5 (for 32-bit) or 6 (for 64-bit) bits of src2 specify bit offset from
bit 0. The least significant 5 (for 32-bit) or 6 (for 64-bit) of src3 specify a bit-field width.
src0 specifies the bits into which the replacement bits specified by src1 are
inserted.

The result is undefined if the bit offset plus bit-field width is greater than the dest
operand length.

The bitinsert operation supports both signed and unsigned forms to aid readers
of the code, though both forms compute the same result.
offset = src2 & (operation.length == 32 ? 31 : 63);
width = src3 & (operation.length == 32 ? 31 : 63);
mask = (1 << width) - 1;
dest = (src0 & ~(mask << offset)) | ((src1 & mask) << offset);

bitmask
Creates a bit mask that can be used with bitselect.

dest is treated as the TypeLength of the operation. src0 and src1 are treated as
u32.

The least significant 5 (for 32-bit) or 6 (for 64-bit) bits of src0 specify bit offset from
bit 0. The least significant 5 (for 32-bit) or 6 (for 64-bit) of src1 specify a bit-mask
width. dest is set to a bit mask that contains width consecutive 1 bits starting at
offset.

The result is undefined if the bit offset plus bit mask width is greater than the
dest operand length.

offset = src0 & (operation.length == 32 ? 31 : 63);
width = src1 & (operation.length == 32 ? 31 : 63);
mask = (1 << width) - 1;
dest = mask << offset;

bitrev
Reverses the bits in a register. For example, given 0x12345678, the result would be
0x1e6a2c48.

bitselect
Bit field select. This operation sets the destination dest to selected bits of src1 and
src2. The source src0 is a mask used to select bits from src1 or src2, using this
formula:
dest = (src1 & src0) | (src2 & ~src0)

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

80 Arithmetic Operations  

firstbit_u
For unsigned inputs, firstbit finds the first bit set to 1 in a number starting from
the most significant bit. For example:

• firstbit_u32_u32 of 0xffffff (all 1's) returns 0

• firstbit_u32_u32 of 0x7fffffff (one 0 followed by 31 1's) returns 1

• firstbit_u32_u32 of 0x01ffffff (seven 0's followed by 25 1's) returns 7

If no bits or all bits in src0 are set, then dest is set to −1. The result is always a 32-
bit register.

Length applies only to the source.

See this pseudocode:
int firstbit_u(uint a)
{
 if (a == 0)
 return -1;
 int pos = 0;
 while ((int)a > 0) {
 a <<= 1; pos++;
 }
 return pos;
}

See also Table 5–7 (p. 78).

firstbit_s
For signed inputs, firstbit finds the first bit set in a positive integer starting from
the most significant bit, or finds the first bit clear in a negative integer from the most
significant bit.

If no bits in src0 are set, then dest is set to −1. The result is always a 32-bit register.

Length applies only to the source.

See this pseudocode:
int firstbit_s (int a)
{
 uint u = a >= 0? a: ~a; // complement negative numbers
 return firstbit_u(u);
}

See also Table 5–7 (p. 78).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 81

lastbit
Finds the first bit set to 1 in a number starting from the least significant bit. For
example, lastbit of 0x00000001 produces 0. If no bits in src0 are set, then dest is
set to −1. The result is always a 32-bit register.

Length applies only to the source.

The lastbit operation supports both signed and unsigned forms to aid readers of
the code, though both forms compute the same result.

See this pseudocode:
int lastbit(uint a)
{
 if (a == 0) return -1;
 int pos = 0;
 while ((a&1) != 1) {
 a >>= 1; pos++;
 }
 return pos;
}

See also Table 5–7 (p. 78).

Table 5–9 Inputs and Results for firstbit and lastbit Operations

Input firstbit lastbit

00000000 −1 −1

00ffffff 8 0

7fffffff 1 0

01ffffff 7 0

ffffffff 0 0

ffff0f00 0 8

Examples

bitrev_b32 $s1, $s2;
bitrev_b64 $d1, 0x234;

bitextract_s32 $s1, $s1, 2, 3;
bitextract_u64 $d1, $d1, $s1, $s2;

bitinsert_s32 $s1, $s1, $s2, 2, 3;
bitinsert_u64 $d1, $d2, $d3, $s1, $s2;

bitmask_b32 $s0, $s1, $s2;

bitselect_b32 $s3, $s0, $s3, $s4;

firstbit_u32_s32 $s0, $s0;
firstbit_u32_u64 $s0, $d6;

lastbit_u32_u32 $s0, $s0;
lastbit_u32_s64 $s0, $d6;

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

82 Arithmetic Operations  

5.8 Copy (Move) Operations
These operations perform copy or move operations.

5.8.1 Syntax

Table 5–10 Syntax for Copy (Move) Operations

Opcode and Modifiers Operands

combine_v2_b64_b32 dest, (src0,src1)

combine_v4_b128_b32 dest, (src0,src1,src2,src3)

combine_v2_b128_b64 dest, (src0,src1)

expand_v2_b32_b64 (dest0,dest1), src0

expand_v4_b32_b128 (dest0,dest1,dest2,dest3), src0

expand_v2_b64_b128 (dest0,dest1), src0

lda_segment_uLength dest, address-expression

ldc_uLength dest, label

ldc_uLength dest, function

mov_moveType dest, src0

Explanation of Modifiers

segment: Optional segment: global, group, private, kernarg, readonly, spill, or arg. If omitted, flat is used.
(See 2.8 Segments (p. 13)).

Length: 1, 32, 64 , 128 (see Table 4–2 (p. 46)). For lda and ldc, must match the address size (see Table 2–3 (p.
20)).

moveType: b1, b32, b64, b128, u32, u64, s32, s64, f16, f32, f64, roimg, rwimg, samp.

Explanation of Operands

dest, dest0, dest1, dest2, dest3: Destination.

src0, src1, src2, src3: Sources. Can be a register, immediate value, or WAVESIZE.

address-expression: An address expression (see 4.18 Address Expressions (p. 52)).

label: A label identifier.

function: A function identifier.

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.1.7 BRIG Syntax for Copy (Move) Operations (p. 303).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 83

5.8.2 Description

combine
Combines the values in the multiple source registers src0, src1, and so forth to
form a single result, which is stored in the destination register dest. src0 becomes
the least significant bits, src1 the next least significant bits, and so forth.

This operation has a vector source made up of two or four registers. The length of
each source multiplied by the number of source registers must equal the length of
the destination register.

expand
Splits the value in the source operand src0 into multiple parts and stores them in
the multiple destination registers dest0, dest1, and so forth. The least significant
bits of the value are stored in dest0, the next least significant bits in dest1, and so
forth.

This operation has a vector destination made up of two or four registers. The length
of each destination multiplied by the number of destination registers must equal
the length of the source operand.

lda
This operation sets the destination dest to the address of the source.

If segment is present, the address is a segment address of that kind. If segment is
omitted, the address is a flat address.

The address kind must match the source address expression (see 6.1.1 How
Addresses Are Formed (p. 121)). The size of dest must match the address size of
the segment (see Table 2–3 (p. 20)).

The address of a function or label cannot be taken. The ldc operation can be used
instead.

This operation can be followed by an stof or ftos operation to convert to a flat or
segment address if necessary.

You can use this operation to take the byte address of a function's formal parameter
arg variable, but it cannot be used to take the address of an arg variable allocated
in the current scope. This operation can also be used to take the byte address of a
kernel's formal kernarg parameters.

ldc
Places the address of a label or function into the destination dest. The address of
code is always in the global segment. The size of dest must match the address size
of a label or function as appropriate (see Table 2–3 (p. 20)).

See also 8.4 Label Targets (labeltargets Statement) (p. 176).

mov
Copies the source src0 into the destination dest.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

84 Arithmetic Operations  

5.8.3 Additional Information About lda

Assume the following:

• There is a variable %g in the group segment with group segment address 20.

• The group segment starts at flat address x.

• Register $d0 contains the following flat address: x + 10.

If the address contains an identifier, then the segment for the identifier must agree
with the segment used in the operation. lda only computes addresses. It does not
convert between segments and flat addressing.
lda_u64 $d1, [$d0 + 10]; // sets $d1 to the flat address x + 20
mov_b64 $d1, $d0; // sets $d1 to the flat address x + 10

lda_group_u32 $s1, [%g]; // loads the segment address of %g into $s1
stof_group_u64_u32 $d1, $s1; // convert $s1 to flat address in large machine
 // model; result is (x + 20)

Examples

combine_v2_b64_b32 $d0, ($s0, $s1);
combine_v4_b128_b32 $q0, ($s0, $s1, $s2, $s3);
combine_v2_b128_b64 $q0, ($d0, $d1);

expand_v2_b32_b64 ($s0, $s1), $d0;
expand_v4_b32_b128 ($s0, $s1, $s2, $s3), $q0;
expand_v2_b64_b128 ($d0, $d1), $q0;

lda_private_u32 $s1, [&p];
global_u32 %g[3];
lda_global_u64 $d1, [%g];
stof_global_u64 $d0, $d1;
lda_global_u64 $d1, [$d1 + 8];

ldc_u64 $s1, &some_function;
ldc_u32 $s2, @lab;
// ...
@lab:

mov_b1 $c1, 0;

mov_b32 $s1, 0;
mov_b32 $s1, 0.0f;

mov_b64 $d1, 0;
mov_b64 $d1, 0.0;

5.9 Packed Data Operations
These operations perform shuffle, interleave, pack, and unpack operations on packed
data. In addition, many of the integer (see 5.2 Integer Arithmetic Operations (p. 65))
and floating-point (see 5.11 Floating-Point Arithmetic Operations (p. 95)) operations
support packed data as does the cmp operation (see 5.17 Compare (cmp) Operation (p.
111)).

See Table 5–11 (p. 86) and Table 5–12 (p. 86).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 85

5.9.1 Syntax

Table 5–11 Syntax for Shuffle and Interleave Operations

Opcodes and Modifiers Operands

shuffle_TypeLength dest, src0, src1, src2

unpacklo_TypeLength dest, src0, src1

unpackhi_TypeLength dest, src0, src1

Explanation of Modifiers (see 4.14.2 Packed Data (p. 46))

Type: s, u, f.

Length: 8x4, 8x8, 16x2, 16x4, 32x2

Explanation of Operands

dest: Destination. See the Description below.

src0, src1: Sources. Must be a packed register or a constant value.

src2: Source. Must be a constant value used to select elements. See Table 5–13 (p. 89).

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.1.8 BRIG Syntax for Packed Data Operations (p. 304).

Table 5–12 Syntax for Pack and Unpack Operations

Opcodes and Modifiers Operands

pack_destTypedestLength_srcTypesrcLength dest, src0, src1, src2

unpack_destTypedestLength_srcTypesrcLength dest, src0, src1

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

86 Arithmetic Operations  

Explanation of Modifiers

destType: s, u, f.

srcType: s, u, f.

destLength:

For pack, can be 8x4, 8x8, 8x16, 16x2, 16x4, 16x8, 32x2, 32x4, 64x2.

For unpack, can be 32, 64, and, if destType is f, can be 16.

srcLength:

For pack, can be 32, 64, and, if destType is f, can be 16.

For unpack, can be 8x4, 8x8, 8x16, 16x2, 16x4, 16x8, 32x2, 32x4, 64x2.

See Table 4–2 (p. 46) and Table 4–3 (p. 47).

Explanation of Operands

dest: Destination register.

src0, src1, src2, src3: Sources. Can be a register, immediate value, or WAVESIZE.

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.1.8 BRIG Syntax for Packed Data Operations (p. 304).

5.9.2 Description

shuffle
Selects half of the elements of src0 based on controls in src2 and copies them into
the upper half of the dest. It then selects half of the elements of src1 based on
controls in src2 and copies them into the lower half of the dest. See 5.9.3 Controls
in src2 for shuffle Operation (p. 89).

unpacklo
Copies and interleaves the lower elements from each source into the destination.

unpackhi
Copies and interleaves the upper elements from each source into the destination.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 87

pack
Assigns the elements of the packed value in src0 to dest, replacing the element
specified by src2 with the value from src1.

src0 is the same packed type as dest.

src2 has the fixed compound type of u32. It specifies the index of the element to
pack.

If the element count is 2 (that is, the Length ends with x2), the index is specified in
the least significant bit of src2.

If the element count is 4 (that is, the Length ends with x4), the index is specified in
the least significant 2 bits of src2.

If the element count is 8 (that is, the Length ends with x8), the index is specified in
the least significant 3 bits of src2.

If the element count is 16 (that is, the Length ends with x16), the index is specified
in the least significant 4 bits of src2.

The index 0 corresponds to the least significant bits, with higher values
corresponding to elements with serially higher significant bits.

src1 has the compound type srcTypesrcLength.

See 4.17 Operands (p. 50). The normal rules for source and destination operands
apply but using the destination packed type's element compound type:

• The source and destination type (s, u, f) must match.

• For integer types, the source compound type size must be at least the size of
the packed destination type's element size. If the source is a register, the
register must be the size of the source compound type. If the source size is
bigger than the destination type's element size, then the value will be
truncated and the least significant bits used.

• For f32 and f64 types, if the source is a register, its size must match the
destination type's element size.

• For f16 type, if the source is a register, it must be an s register. Its value will
be converted from the register representation to the memory representation
to create a 16-bit value that is then used. See 4.21 Floating-Point Numbers (p.
54).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

88 Arithmetic Operations  

unpack
Assigns the element specified by src1 from the packed value in src0 to dest.

src1 has the fixed compound type of u32. Its value must be in the range 0 to number
of elements in the packed source type − 1. It is undefined if src1 is out of this range.
The value 0 corresponds to the least significant bits, with higher values
corresponding to elements with serially more significant bits.

src0 has the compound type srcTypesrcLength.

See 4.17 Operands (p. 50). The normal rules for source and destination operands
apply but using the packed type's element compound type:

• The source and destination type (s, u, f) must match.

• For integer types, the source compound type size must be at least the size of
the packed source type's element size. The destination register must be the
size of the destination compound type. If the destination compound type size
is bigger than the source type's element size, then the value will be sign-
extended for s and zero-extended for u.

• For f32 and f64 types, the destination compound type must match the packed
source type's element type. The destination register must be the size of the
destination compound type.

• For f16 type, the destination register must be an s register. The packed
element value will be converted from the memory representation to the
register representation. See 4.21 Floating-Point Numbers (p. 54).

5.9.3 Controls in src2 for shuffle Operation

src2 of type b32 or b64 contains a set of bit selectors as shown in the table below.

The second column shows where the bits are copied to in the destination.

Table 5–13 Bit Selectors for shuffle Operation

src2 Bits for Packed Data Types s8x4 and u8x4 Copied to

1-0 selects one of four bytes from src0 dest bits 7-0

3-2 selects one of four bytes from src0 dest bits 15-8

5-4 selects one of four bytes from src1 dest bits 23-16

7-6 selects one of four bytes from src1 dest bits 31-24

src2 Bits for Packed Data Types s8x8 and u8x8 Copied to

2-0 selects one of eight bytes from src0 dest bits 7-0

5-3 selects one of eight bytes from src0 dest bits 15-8

8-6 selects one of eight bytes from src0 dest bits 23-16

11-9 selects one of eight bytes from src0 dest bits 31-24

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 89

src2 Bits for Packed Data Types s8x8 and u8x8 Copied to

14-12 selects one of eight bytes from src1 dest bits 39-32

17-15 selects one of eight bytes from src1 dest bits 47-40

20-18 selects one of eight bytes from src1 dest bits 55-48

23-21 selects one of eight bytes from src1 dest bits 63-56

src2 Bits for Packed Data Types s16x2, u16x2, and f16x2 Copied to

0 selects one of two 16-bit values from src0 dest bits 15-0

1 selects one of two 16-bit values from src1 dest bits 31-16

src2 Bits for Packed Data Types s16x4, u16x4, and f16x4 Copied to

1-0 selects one of four 16-bit values from src0 dest bits 15-0

3-2 selects one of four 16-bit values from src1 dest bits 31-16

5-4 selects one of four 16-bit values from src0 dest bits 47-32

7-6 selects one of four 16-bit values from src1 dest bits 63-48

src2 Bits for Packed Data Type f32x2 Copied to

0 selects one of two 32-bit values from src0 dest bits 31-0

1 selects one of two 32-bit values from src1 dest bits 63-32

5.9.4 Common Uses for shuffle Operation

Common uses for the shuffle operation include broadcast, swap, and rotate.

Broadcast

Broadcast the least significant data element into the destination:
shuffle_u8x4 dest, src0, src1, 0;

src2 is the constant 00 00 00 00 in bits.

Broadcast the second data element into the destination:
shuffle_u8x4 dest, src0, src1, 0x55;

src2 is the constant 01 01 01 01 in bits.

Broadcast the third data element into the destination:
shuffle_u8x4 dest, src0, src1, 0xaa;

src2 is the constant 10 10 10 10 in bits.

Broadcast the most significant data element into the destination:
shuffle_u8x4 dest, src0, src0, 0xff;

src2 is the constant 11 11 11 11 in bits.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

90 Arithmetic Operations  

See the figure below.

Figure 5–1 Example of Broadcast

Swap

Swap (switch the order of data elements; the reverse is 0x1b):
shuffle_u8x4 dest, src0, src0, 0x1b;

src2 is the constant 00 01 10 11 in bits.

Rotate

To rotate:

• 0x93 is the left rotate (shifting data to the left); the most significant data element
is moved to the least significant position.

• 0x39 is the right rotate (shifting data to the right); the least significant data element
is moved to the most significant position.

See the figure below, which is an example of a shuffle with two specific masks.

Figure 5–2 Example of Rotate

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 91

5.9.5 Examples of unpacklo and unpackhi Operations

See the figure below.

Figure 5–3 Example of Unpack

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

92 Arithmetic Operations  

Examples

shuffle_u8x4 $s10, $s12, $s12, 0x55;
unpacklo_u8x4 $s1, $s2, 72;
unpackhi_f16x2 $s3, $s3,$s4;

// Packing with no conversions:
pack_f32x2_f32 $d1, $s2, 1;
pack_f32x4_f32 $q1, $s2, 3;
pack_u32x2_u32 $d1, $s1, 2;
pack_s64x2_s64 $q1, $d1, 0;

// Packing with integer truncation:
pack_u8x4_u32 $s1, $s2, $s3, 2;
pack_s16x4_s64 $d1, $d1, $d2, 0;
pack_u32x2_u64 $d1, $d2, $d3, 0;

// Packing an f16 and converting from the
// implementation-defined register representation:
pack_f16x2_f16 $s1, $s2, s3, 1;
pack_f16x4_f16 $d1, $d2, s3, 3;

// Unpacking with no conversions:
unpack_f32_f32x2 $s1, $d2, 1;
unpack_f32_f32x4 $s1, $q2, 3;
unpack_u32_u32x4 $s1, $q1, 2;
unpack_s64_s64x2 $d1, $q1, 0;

// Unpacking with integer sign or zero extension:
unpack_u32_u8x4 $s1, $s2, 2;
unpack_s32_s16x4 $s1, $d1, 0;
unpack_u64_u32x4 $d1, $q1, 2;
unpack_s64_s32x2 $d1, $d2, 0;

// Unpacking an f16 and converting to the
// implementation-defined register representation:
unpack_f16_f16x2 $s1, $s2, 1;
unpack_f16_f16x4 $s1, $d2, 3;

// Unpacking a u8 and converting to f32:
unpack_f32_u8x4 $s1, $s2, 0;
unpack_f32_u8x4 $s1, $s2, 1;
unpack_f32_u8x4 $s1, $s2, 2;
unpack_f32_u8x4 $s1, $s2, 3;

5.10 Bit Conditional Move (cmov) Operation
The cmov operation performs a bit conditional move.

There is a packed form of this operation.

5.10.1 Syntax

Table 5–14 Syntax for Bit Conditional Move (cmov) Operation

Opcode and Modifiers Operands

cmov_TypeLength dest, src0, src1, src2

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 93

Explanation of Modifiers (see Table 4–2 (p. 46))

Type: For the regular operation: b. For the packed operation: s, u, f.

Length: For the regular operation, Length can be 1, 32, 64. Applies to src1, and src2. For the packed
operation, Length can be any packed type.

Explanation of Operands

dest: Destination register. For the packed form, if the length is 32 bits, then dest must be an s register; if
the length is 64 bits, then dest must be a d register; if the length is 128 bits, then dest must be a q register.

src0, src1, src2: Sources. For the regular operation, src0 must be a control (c) register or an immediate
value and is of type b1. For the packed operation, if the Length is 32 bits, then src0 must be an s register
or constant value of type uLength; if the Length is 64 bits, then src0 must be a d register or constant value
of type uLength; if the Length is 128 bits, then src0 must be a q register or constant value of type
uLength. For the packed operation, each element in src0 is assumed to contain either all 1's (true) or all
0's (false); results are undefined for other src0 values.

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.1.9 BRIG Syntax for Bit Conditional Move (cmov) Operation
(p. 304).

5.10.2 Description

The regular form of cmov conditionally moves either of two 1-bit, 32-bit, 64-bit, or 128-
bit values into the destination register dest. If the source src0 is false (0), the
destination is set to the value of src2; otherwise, the destination is set to the value of
src1.

The packed form of cmov conditionally moves each element of the packed type
independently. If the element in src0 is false (0), the corresponding destination
element is set to the corresponding element of src2; otherwise, the destination is set
to the corresponding element of src1.

Examples

cmov_b32 $s1, $c3, $s1, $s2;
cmov_b64 $d1, $c3, $d1, $d2;
cmov_b32 $s1, $c0, $s1, $s2;

cmov_u8x4 $s1, $s0, $s1, $s2;
cmov_s8x4 $s1, $s0, $s1, $s2;
cmov_s8x8 $d1, $d0, $d1, $d2;

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

94 Arithmetic Operations  

5.11 Floating-Point Arithmetic Operations

5.11.1 Overview

HSAIL provides a rich set of floating-point operations.

Most HSAIL floating-point operations follow the IEEE/ANSI Standard 754-2008 for
floating-point arithmetic. However, there are important differences:

• Flags are supported using the DETECT exception policy and related operations.
See 13.3 Hardware Exception Policies (p. 221).

• Some operations are fast approximations (the nsqrt operation is an example).
See 5.13 Floating-Point Native Functions Operations (p. 103).

• Many operations that are not in the IEEE/ANSI Standard 754-2008 are provided.

The ftz (flush to zero) modifier, which forces subnormal values to zero, is supported
on most operations.

If the Base profile has been specified and the operation supports the ftz modifier, then
the ftz modifier must be specified. (See 17.2.2 Base Profile Requirements (p. 243).)
Otherwise, if the operation supports the ftz modifier, it is optional, and if omitted the
operation must not flush subnormal values to zero. In all other cases, the ftz modifier
must not be specified.

If ftz is specified, it is performed on all source operands before the operation is
performed. Any exceptions generated by the operation and subsequent rounding are
based on the flushed source values.

All four IEEE/ANSI Standard 754-2008 rounding modes are supported for some
operations: up, down, near, and zero. If the round modifier is omitted, and the operation
supports a rounding mode, near is assumed. See 4.11 Rounding Modes (p. 39). If the
Base profile has been specified, it is an error to use any rounding mode except near.
(See 17.2.2 Base Profile Requirements (p. 243).)

It is implementation-defined if rounding generates underflow based on the value
before or after rounding, but an implementation must use the same method for all
operations. If the rounding specified by the operation does generate an underflow
exception and ftz is specified, then the result must be set to 0.0 and the inexact
exception generated if not already generated by the rounding. Note that the flush to
zero of the result is required to be based on the generation of underflow, not on the
result produced by rounding.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 95

For all operations except abs, copysign, and neg:

• If one or more of the inputs is a signaling NaN, an invalid operation exception
must be generated. (See Chapter 13 Exceptions (p. 219).)

• NaN payloads are supported for both double and single floating-point. If one or
more inputs are NaNs, the result must be a quiet NaN. (The exception to this rule
is min and max when one of the inputs is a NaN and the other is a number; see
the Description below.) The NaN produced must be one of the following:

• If the Base profile has been specified, it is implementation-defined which
NaN will be returned and if the NaN payload is preserved. However, the
sign must be preserved. (See 17.2.2 Base Profile Requirements (p. 243).)

• Otherwise the NaN produced must be bit-identical to one of the inputs (it
is implementation-defined which NaN will be returned), except signaling
NaNs must be converted to quiet NaNs.

• If an operation produces a NaN, it must produce a quiet NaN.

• Operations are required to follow IEEE/ANSI Standard 754-2008 in generation of
exceptions and generation of returned values if exceptions are generated.

For abs, copysign, and neg, the operation is performed as a bit operation, only acting
upon the sign bit:

• They do not generate any exceptions, including underflow or inexact, nor
invalid operation if any of their inputs are signaling NaNs.

• They do not flush subnormal values to 0.0.

• They do not convert signaling NaNs to quiet NaNs.

• For abs and neg, if the source is a NaN, its exact value must be preserved, except
the sign bit is set to 0 for abs, and inverted for neg.

• For copysign, if either operand is a NaN, the result is still the exact bits of src0
with the sign bit set to the sign bit value of src1.

HSAIL supports packed versions of some floating-point arithmetic operations. The
value for each element of the packed result is the same as would be produced by the
non-packed version of the operation, including handling of the ftz and rounding
modifiers. For the packed f16 types, both the source and destination elements are
represented using the 16-bit memory representation, not the implementation-defined
register representation.

5.11.2 Syntax

Table 5–15 Syntax for Floating-Point Arithmetic Operations

Opcode and Modifiers Operands

abs_TypeLength dest, src0

add_ftz_round_TypeLength dest, src0, src1

ceil_ftz_TypeLength dest, src0

copysign_TypeLength dest, src0, src1

div_ftz_round_TypeLength dest, src0, src1

floor_ftz_TypeLength dest, src0

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

96 Arithmetic Operations  

Opcode and Modifiers Operands

fma_ftz_round_TypeLength dest, src0, src1, src2

fract_ftz_TypeLength dest, src0

max_ftz_TypeLength dest, src0, src1

min_ftz_TypeLength dest, src0, src1

mul_ftz_round_TypeLength dest, src0, src1

neg_TypeLength dest, src0

rint_ftz_TypeLength dest, src0

sqrt_ftz_round_TypeLength dest, src0

sub_ftz_round_TypeLength dest, src0, src1

trunc_ftz_TypeLength dest, src0

Explanation of Modifiers

ftz: Required if the Base profile has been specified, otherwise optional. If specified, forces subnormal
values to zero, otherwise subnormal values are not flushed to zero.

round: Optional rounding mode. If the Base profile has been specified (see 17.2.2 Base Profile Requirements
(p. 243)) only near; otherwise up, down, zero, or near.

Type: f (see Table 4–2 (p. 46)).

Length: 16, 32, 64 (see Table 4–2 (p. 46)).

Explanation of Operands

dest: Destination register.

src0, src1, src2: Sources. Can be a register or immediate value.

Exceptions (see Chapter 13 Exceptions (p. 219))

Floating-point exceptions are allowed.

Table 5–16 Syntax for Packed Versions of Floating-Point Arithmetic Operations

Opcode and Modifiers Operands

abs_Control_TypeLength dest, src0

add_ftz_round_Control_TypeLength dest, src0, src1

ceil_ftz_Control_TypeLength dest, src0

copysign_Control_TypeLength dest, src0, src1

div_ftz_round_Control_TypeLength dest, src0, src1

floor_ftz_Control_TypeLength dest, src0

fract_ftz_Control_TypeLength dest, src0

max_ftz_Control_TypeLength dest, src0

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 97

Opcode and Modifiers Operands

min_ftz_Control_TypeLength dest, src0, src1

mul_ftz_round_Control_TypeLength dest, src0, src1

neg_Control_TypeLength dest, src0

rint_ftz_Control_TypeLength dest, src0

sqrt_ftz_round_Control_TypeLength dest, src0

sub_ftz_round_Control_TypeLength dest, src0, src1

trunc_ftz_Control_TypeLength dest, src0

Explanation of Modifiers (see 4.15 Packing Controls for Packed Data (p. 47))

ftz: See table above.

round: See table above.

Control for abs, ceil, floor, fract, neg, rint, sqrt, and trunc: p or s. See 4.15 Packing Controls for Packed
Data (p. 47).

Control for add, copysign, div, max, min, mul, and sub: pp, ps, sp, or ss.

TypeLength: f16x2, f16x4, f16x8, f32x2, f32x4, f64x2. See 4.14.2 Packed Data (p. 46).

Explanation of Operands

dest: Destination register.

src0, src1, src2: Sources. Can be a register or immediate value.

Exceptions (see Chapter 13 Exceptions (p. 219))

Floating-point exceptions are allowed.

For BRIG syntax, see 19.10.1.10 BRIG Syntax for Floating-Point Arithmetic Operations
(p. 305).

5.11.3 Description

abs
Copies a floating-point operand src0 to the destination dest, setting the sign bit to
0 (positive). No rounding is performed.

The ftz modifier is not supported.

add
Performs the IEEE/ANSI Standard 754-2008 standard floating-point add.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

98 Arithmetic Operations  

ceil
Rounds the floating-point source src0 toward positive infinity to produce a floating-
point integral number that is assigned to the destination dest. If the source has an
infinity value, the result will be the same infinity value. No exceptions are generated
besides invalid operation for a signaling NaN source.

copysign
Copies a floating-point operand src0 to the destination dest, but the sign of the
destination is copied from the sign bit of src1. NaN payloads are preserved.

The ftz modifier is not supported.

div
Computes source src0 divided by source src1 and stores the result in the
destination dest. This operation follows IEEE/ANSI Standard 754-2008 rules.

div must return a correctly rounded result in the Full profile and return a result
within 2.5 ULP (unit of least precision) of the mathematically accurate value in the
Base profile. (See Chapter 17 Profiles (p. 241).)

floor
Rounds the floating-point source src0 toward negative infinity to produce a
floating-point integral number that is assigned to the destination dest. If the source
has an infinity value, the result will be the same infinity value. No exceptions are
generated besides invalid operation for a signaling NaN source.

fma
The floating-point fma (fused multiply add) computes src0 * src1 + src2 with
unbounded range and precision. The resulting value is then rounded once using
the specified rounding mode.

No underflow, overflow, or inexact exception can be generated for the multiply.
However, these exceptions can be generated by the addition. Thus, fma differs from
a mul followed by an add.

fma is not supported as a packed operation, because it takes three source operands.

fract
Sets the destination dest to the fractional part of source src0.

fract_f16 returns min_f16(x – floor(x), implementation-defined.

fract_f32 returns min_f32(x – floor(x), 0x1.fffffep-1f).

fract_f64 returns min_f64(x - floor(x), 0x1.fffffffffffffp-1).

In all cases, the min is used to ensure that the result of the fract operation of a small
negative number is not 1 so that the result is in the half-open interval [0, 1).

Because the register format for f16 is implementation-defined (see 4.21 Floating-
Point Numbers (p. 54)), the value used in the min_f16 operation must be the largest
value that can be exactly represented that is less than 1.0. For example, if the register
representation of f16 is the same as the memory representation, then
0x1.ffcp-1 must be used. Note that if the result of fract is stored to memory, it
might become 1.0 due to the conversion to the memory format of f16 (see 4.21
Floating-Point Numbers (p. 54)).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 99

max
Computes the maximum of source src0 and source src1 and stores the result in
the destination dest.

max implements the maxNum operation as described in IEEE/ANSI Standard
754-2008. If one of the inputs is a quiet NaN and the other input is not a NaN, then
the non-NaN input is returned; otherwise NaN inputs are handled as described in
5.11.1 Overview (p. 95).

min
Computes the minimum of source src0 and source src1 and stores the result in
the destination dest.

min implements the minNum operation as described in IEEE/ANSI Standard
754-2008. If one of the inputs is a quiet NaN and the other input is not a NaN, then
the non-NaN input is returned; otherwise NaN inputs are handled as described in
5.11.1 Overview (p. 95).

mul
Multiplies source src0 by source src1 (following IEEE/ANSI Standard 754-2008
rules) and stores the result in the destination dest.

neg
Copies a floating-point operand src0 to a destination dest, reversing the sign bit.
neg is not the same as sub(0, x). Consider neg of +0.0. neg preserves NaN payloads;
only the sign bit is changed. neg does no rounding.

The ftz modifier is not supported.

rint
Rounds the floating-point source src0 toward the nearest integral number,
choosing the even integral value if there is a tie, to produce a floating-point integral
number that is assigned to the destination dest. If the source has an infinity value,
the result will be the same infinity value. No exceptions are generated besides
invalid operation for a signaling NaN source.

sub
Subtracts source src1 from source src0 and places the result in the destination
dest. The answer is computed according to IEEE/ANSI Standard 754-2008 rules.

sqrt
Sets the destination dest to the square root of source src0.

If src0 is negative, must return a quiet NaN and generate the invalid operation
exception.

sqrt returns the correctly rounded result for the Full profile and a result within 1
ULP of the mathematically accurate value for the Base profile. (See
Chapter 17 Profiles (p. 241).)

trunc
Rounds the floating-point source src0 toward zero to produce a floating-point
integral number that is assigned to the destination dest. If the source has an infinity
value, the result will be the same infinity value. No exceptions are generated besides
invalid operation for a signaling NaN source.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

100 Arithmetic Operations  

Examples of Regular (Nonpacked) Operations

abs_f32 $s1,$s2; abs_f64 $d1,$d2;
add_f32 $s3,$s2,$s1;
add_f64 $d3,$d2,$d1;
copysign_f32 $s3,$s2,$s1;
copysign_f64 $d3,$d2,$d1;
div_f32 $s3,1.0f,$s1;
div_f64 $d3,1.0,$d0;
fma_f32 $s3,1.0f,$s1,23f;
fma_f64 $d3,1.0,$d0, $d3;
max_f32 $s3,1.0f,$s1;
max_f64 $d3,1.0,$d0;
min_f32 $s3,1.0f,$s1;
min_f64 $d3,1.0,$d0;
mul_f32 $s3,1.0f,$s1;
mul_f64 $d3,1.0,$d0;
neg_f32 $s3,1.0f;
neg_f64 $d3,1.0;
sub_f32 $s3,1.0f,$s1;
sub_f64 $d3,1.0,$d0;
fract_f32 $s0, 3.2f;

Examples of Packed Operations

version 1:0;
function &packed_ops (arg_u8x4 %x)() {
 abs_p_f16x2 $s1, $s2;
 abs_p_f32x2 $d1, $d1;
 neg_p_f16x2 $s1, $s2;
 add_pp_f16x2 $s1, $s0, $s3;
};

5.12 Floating-Point Classify (class) Operation
The floating-point classify (class) operation tests properties of a floating-point
number in source src0, storing a 1 in the destination dest if any of the conditions
specified in src1 are true.

If all conditions are false, dest is set to zero.

5.12.1 Syntax

Table 5–17 Syntax for Floating-Point Classify (class) Operation

Opcode and Modifiers Operands

class_b1_sourceTypeSourceLength dest, src0, src1

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 101

Explanation of Modifiers (see Table 4–2 (p. 46))

sourceType: f

sourceLength: 16, 32, 64

Explanation of Operands

dest: Destination. Must be a control (c) register.

src0: Source whose properties are being tested. Must be a register or immediate value of type
sourceTypeSourceLength (see 4.17 Operands (p. 50)).

src1: Source bit set specifying the conditions being tested. Must be a register or immediate value of
compound type u32 (see 4.17 Operands (p. 50))

See Table 5–18 (p. 102).

Table 5–18 Conditions and Source Bits

Condition being tested Bit value

Signaling NaN 0x001

Quiet NaN 0x002

Negative infinity 0x004

Negative normal 0x008

Negative subnormal 0x010

Negative zero 0x020

Positive zero 0x040

Positive subnormal 0x080

Positive normal 0x100

Positive infinity 0x200

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.1.11 BRIG Syntax for Floating-Point Classify (class)
Operation (p. 306).

5.12.2 Description

The values of Table 5–18 (p. 102) can be combined. Thus, the following code:
class_f32 $c1, $s1, 3;

will set the register c1 to 1 if $s1 is either a signaling or quiet NaN.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

102 Arithmetic Operations  

Examples

class_b1_f32 $c1, $s1, 3;
class_b1_f32 $c1, $s1, $s2;
class_b1_f64 $c1, $d1, $s2;
class_b1_f64 $c1, $d1, 3;

5.13 Floating-Point Native Functions Operations
The floating-point native functions operations provide fast approximate
implementation values. They are intended to be used where speed is preferred over
accuracy. Native operations can be used in device-specific libraries, and thus will
know the accuracy of the operations on that device. They can also be used in code that
first performs tests to ensure the current device's native operations meet the accuracy
requirements of the algorithm.

These operations are expected to take advantage of hardware acceleration.

If one or more of the inputs is a signaling NaN, an invalid operation exception must be
generated. If the operation produces a NaN, it must be a non-signaling NaN.

These operations do not support rounding modes or the flush to zero (ftz) modifier.
It is implementation-defined how they round the result, whether or not subnormal
values are flushed to zero, if NaN payloads are preserved (regardless of the profile
specified), or if exceptions (other than for signaling NaNs) are generated. See 17.2
Profile-Specific Requirements (p. 242).

5.13.1 Syntax

Table 5–19 Syntax for Floating-Point Native Functions Operations

Opcode and Modifiers Operands

ncos_f32 dest, src

nexp2_f32 dest, src

nfma_TypeLength dest, src0, src1, src2

nlog2_f32 dest, src

nrcp_TypeLength dest, src

nrsqrt_TypeLength dest, src

nsin_f32 dest, src

nsqrt_TypeLength dest, src

Explanation of Modifiers

Type: f (see Table 4–2 (p. 46)).

Length: 16, 32, 64 (see Table 4–2 (p. 46)).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 103

Explanation of Operands

dest: Destination register.

src, src0, src1, src2: Sources. Can be a register or immediate value.

Exceptions (see Chapter 13 Exceptions (p. 219))

Standard floating-point exceptions are allowed.

For BRIG syntax, see 19.10.1.12 BRIG Syntax for Floating-Point Native Functions
Operations (p. 306).

5.13.2 Description

ncos
Computes the cosine of the angle in source src and stores the result in the
destination dest. The angle src is in radians. For ncos, input values outside the
range [−512π, +512π] may be treated as 1.0.

nexp2
Computes the base-2 exponential of a value.

nfma
The floating-point nfma (native fused multiply add) computes a src0 * src1 + src2
and stores the result in the destination dest.

nlog2
Finds the base-2 logarithm of a value.

nrcp
Computes the floating-point reciprocal.

nrsqrt
Computes the reciprocal of the square root.

nsin
Computes the sine of the angle in source src and stores the result in the destination
dest. The angle src is in radians. For nsin, input values outside the range [−512π,
+512π] may be treated as 1.0.

nsqrt
Computes the square root.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

104 Arithmetic Operations  

Examples

ncos_f32 $s1, $s0;

nexp2_f32 $s1, $s0;

nfma_f32 $s3, 1.0f, $s1, 23.0f;
nfma_f64 $d3, 1.0L, $d0, $d3;

nlog2_f32 $s1, $s0;

nrcp_f32 $s1, $s0;

nrsqrt_f32 $s1, $s0;

nsin_f32 $s1, $s0;

5.14 Multimedia Operations
These operations support fast multimedia operations. The operations work on special
packed formats that have up to four values packed into a single 32-bit register.

5.14.1 Syntax

Table 5–20 Syntax for Multimedia Operations

Opcode Operands

bitalign_b32 dest, src0, src1, src2

bytealign_b32 dest, src0, src1, src2

lerp_u8x4 dest, src0, src1, src2

packcvt_u8x4_f32 dest, src0, src1, src2, src3

unpackcvt_f32_u8x4 dest, src0, src1

sad_u32_u32 dest, src0, src1, src2

sad_u32_u16x2 dest, src0, src1, src2

sad_u32_u8x4 dest, src0, src1, src2

sad_hi_u32_u8x4 dest, src0, src1, src2

Explanation of Operands

dest: The destination must be an s register.

src0, src1, src2, src3: Sources. Can be a register, immediate value, or WAVESIZE, except src1 for
unpackcvt must be an immediate with value 0, 1, 2, or 3.

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 105

For BRIG syntax, see 19.10.1.13 BRIG Syntax for Multimedia Operations (p. 307).

5.14.2 Description

bitalign
Used to align 32-bits within 64-bits of data on an arbitrary bit boundary. src2 is
treated as a u32 value and the least significant 5 bits used to specify a shift amount.
The 32-bit src0 and src1 are treated as the least significant and most significant bits
of a 64-bit value respectively, which is shifted right by the shift amount of bits, and
the least significant 32 bits returned.
uint32 shift = src2 & 31;
uint64_t value = (((uint64_t)src1) << 32) | ((uint64_t)src0);
uint32_t dest = (uint32_t)((value >> shift) & 0xffffffff);

If src0 contains 0xA3A2A1A0 and src1 contains 0xB3B2B1B0, then:

• bitalign dest, src0, src1, 8 results in destination dest containing
0xB0A3A2A1.

• bitalign dest, src0, src1, 16 results in destination dest containing
0xB1B0A3A2.

• bitalign dest, src0, src1, 24 results in destination dest containing
0xB2B1B0A3.

bytealign
Used to align 32-bits within 64-bits of data on an arbitrary byte boundary. src2 is
treated as a u32 value and the least significant 2 bits used to specify a shift amount.
The 32-bit src0 and src1 are treated as the least significant and most significant bits
of a 64-bit value respectively, which is shifted right by the shift amount of bytes,
and the least significant 32 bits returned.
uint32 shift = (src2 & 3) * 8;
uint64_t value = (((uint64_t)src1) << 32) | ((uint64_t)src0);
uint32_t dest = (uint32_t)((value >> shift) & 0ffffffff);

If src0 contains 0xA3A2A1A0 and src1 contains 0xB3B2B1B0, then:

• bytealign dest, src0, src1, 1 results in destination dest containing
0xB0A3A2A1.

• bytealign dest, src0, src1, 2 results in destination dest containing
0xB1B0A3A2.

• bytealign dest, src0, src1, 3 results in destination dest containing
0xB2B1B0A3.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

106 Arithmetic Operations  

lerp
Linear interpolation (lerp) for multimedia format data. Computes the unsigned 8-
bit pixel average.

Treating the sources as four 8-bit packed unsigned values, this operation adds each
byte of src0 and src1 and the least significant bit of each byte of src2 and then
divides each result by 2.
dest = (((((src0 >> 24) & 0xff) + ((src1 >> 24) & 0xff) +
 ((src2 >> 24) & 0x1)) >> 1)) & 0xff) << 24) |
 (((((src0 >> 16) & 0xff) + ((src1 >> 16) & 0xff) +
 ((src2 >> 16) & 0x1)) >> 1)) & 0xff) << 16) |
 (((((src0 >> 8) & 0xff) + ((src1 >> 8) & 0xff) +
 ((src2 >> 8) & 0x1)) >> 1)) & 0xff) << 8) |
 (((src0 & 0xff) + (src1 & 0xff) + (src2 & 0x1)) >> 1)) & 0xff)

packcvt
Takes four floating-point numbers, converts them to unsigned integer values, and
packs them into a packed u8x4 value. Conversion is performed using round to
nearest even. Values greater than 255.0 are converted to 255. Values less than 0.0
are converted to 0.
dest = (((uint32_t)(cvt_neari_sat_u8_f32(src0))) << 0) |
 (((uint32_t)(cvt_neari_sat_u8_f32(src1))) << 8) |
 (((uint32_t)(cvt_neari_sat_u8_f32(src2))) << 16) |
 (((uint32_t)(cvt_neari_sat_u8_f32(src3))) << 24);

unpackcvt
Unpacks a single element from a packed u8x4 value and converts it to an f32.
src1 specifies the element and must be an immediate u32 with a value of 0, 1, 2, or
3.
shift = src1 * 8;
dest = cvt_f32_u8((src0 >> shift) & 0xff);

sad
Computes the sum of the absolute differences of src0 and src1 and then adds
src2 to the result. src0 and src1 are either u32, u16x2, or u8x4 and the absolute
difference is performed treating the values as unsigned. The dest and src2 are
u32 .

• sad_u32_u32:

uint32_t abs_diff(uint32_t a, uint32_t b) {
 return a < b ? b - a : a - b;
}

dest = abs_diff(src0, src1) + src2;

• sad_u32_u16x2:

uint32_t abs_diff(uint16_t a, uint16_t b) {
 return a < b ? b - a : a - b;
}

dest = abs_diff((src0 >> 16) & 0xffff, (src1 >> 16) & 0xffff) +
 abs_diff((src0 >> 0) & 0xffff, (src1 >> 0) & 0xffff) + src2;

• sad_u32_u8x4:

uint32_t abs_diff(uint8_t a, uint8_t b) {
 return a < b ? b - a : a - b;
}

dest = abs_diff((src0 >> 24) & 0xff, (src1 >> 24) & 0xff) +
 abs_diff((src0 >> 16) & 0xff, (src1 >> 16) & 0xff) +
 abs_diff((src0 >> 8) & 0xff, (src1 >> 8) & 0xff) +
 abs_diff((src0 >> 0) & 0xff, (src1 >> 0) & 0xff) + src2;

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 107

sadhi
Same as sad except the sum of absolute differences is added to the most significant
16 bits of dest. dest and src2 are treated as a u16x2. src0 and src1 are treated as
u8x4.

sadhi_u16x2_u8x4 can be used in combination with sad_u32_u8x4 to store two sets
of sum of absolute differences results in a single s register as a u16x2. In this case,
care must be taken that the sad_u32_u8x4 will not overflow the least significant 16
bits.

• sadhi_u16x2_u8x4:

uint32_t abs_diff(uint8_t a, uint8_t b) {
 return a < b ? b - a : a - b;
}

dest = (abs_diff((src0 >> 24) & 0xff, (src1 >> 24) & 0xff) << 16) +
 (abs_diff((src0 >> 16) & 0xff, (src1 >> 16) & 0xff) << 16) +
 (abs_diff((src0 >> 8) & 0xff, (src1 >> 8) & 0xff) << 16) +
 (abs_diff((src0 >> 0) & 0xff, (src1 >> 0) & 0xff) << 16) +
 src2;

Examples

bitalign_b32 $s5, $s0, $s1, $s2;

bytealign_b32 $s5, $s0, $s1, $s2;

lerp_u8x4 $s5, $s0, $s1, $s2;

packcvt_u8x4_f32 $s1, $s2, $s3, $s9, $s3;

unpackcvt_f32_u8x4 $s5, $s0, 0;
unpackcvt_f32_u8x4 $s5, $s0, 1;
unpackcvt_f32_u8x4 $s5, $s0, 2;
unpackcvt_f32_u8x4 $s5, $s0, 3;

sad_u32_u32 $s5, $s0, $s1, $s6;
sad_u32_u16x2 $s5, $s0, $s1, $s6;
sad_u32_u8x4 $s5, $s0, $s1, $s6;

sadhi_u16x2_u8x4 $s5, $s0, $s1, $s6;

5.15 Segment Checking (segmentp) Operation
The segmentp operation tests whether or not a given flat address is within a specific
memory segment.

See also 5.16 Segment Conversion Operations (p. 110).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

108 Arithmetic Operations  

5.15.1 Syntax

Table 5–21 Syntax for Segment Checking (segmentp) Operation

Opcode and Modifiers Operands

segmentp_segment_b1_srcTypesrcLength dest, src

Explanation of Modifiers

segment: Can be global, group, private, kernarg, readonly, spill, or arg (see 2.8 Segments (p. 13))

srcType: u (see Table 4–2 (p. 46))

srcLength: 32, 64. The size of the source address. Must match the address size of segment (see Table 2–3
(p. 20)).

Explanation of Operands

dest: Destination register. Must be a control (c) register.

src: Source for the flat address that is being checked. Can be a register or immediate value. (See Table 2–
3 (p. 20).)

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.1.14 BRIG Syntax for Segment Checking (segmentp)
Operation (p. 307).

5.15.2 Description

This operation sets the destination dest to true (1) if the flat address is within the
address range of the specified segment. If the source is a register, it must match the
size of a flat address. See 2.10 Small and Large Machine Models (p. 20).

Because implementations are allowed to merge certain segments (see Table 2–1 (p.
11)), segmentp might return different results. For example, the following operation
must return true on implementations that merge the spill and private segments, and
it must return false on implementations that keep them separate:
spill_b64 %x;
lda_spill_u32 $s0, [%x];
stof_spill_u64_u32 $d1, $s0;
segmentp_private_b1_u64 $c1, $d1;

See 2.9 Flat Memory and Agents (p. 18) for information about segments that can be
combined.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 109

Examples

segmentp_private_b1_u32 $c1, $s0; // small machine model
segmentp_global_b1_u32 $c1, $s0; // small machine model
segmentp_group_b1_u64 $c1, $d0; // large machine model

5.16 Segment Conversion Operations
The segment conversion operations convert a flat address into a segment address, or
a segment address into a flat address.

See also 5.15 Segment Checking (segmentp) Operation (p. 108).

5.16.1 Syntax

Table 5–22 Syntax for Segment Conversion Operations

Opcodes and Modifiers Operands

ftos_segment_destTypedestLength_srcTypesrcLength dest, src

stof_segment_destTypedestLength_srcTypesrcLength dest, src

Explanation of Modifiers

segment: global, group, private, kernarg, readonly, spill, or arg. (See 2.8 Segments (p. 13).)

destType: u. (See Table 4–2 (p. 46).)

destLength: 32, 64. The size of the destination address. For ftos, must be the address size of segment; for
stof, must be the flat address size. (See Table 2–3 (p. 20).)

srcType: u. (See Table 4–2 (p. 46).)

srcLength: 32, 64. The size of the source address. For ftos, must be the flat address size; for stof, must be
the address size of segment. (See Table 2–3 (p. 20)).

Explanation of Operands

dest: Destination register. (See Table 2–3 (p. 20).)

src: Source to be converted. Can be a register or immediate value. (See Table 2–3 (p. 20).)

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.1.15 BRIG Syntax for Segment Conversion Operations (p.
307).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

110 Arithmetic Operations  

5.16.2 Description

ftos
Converts the flat address specified by src into a segment address and stores the
result in the destination register dest. If the source is not in the specified segment
or a segment that the implementation has combined with it, the result is undefined.
(See 2.9 Flat Memory and Agents (p. 18).)

The destination register size must match the size of the segment address. If the
source is a register, it must match the size of a flat address. (See 2.10 Small and Large
Machine Models (p. 20).

stof
Converts the segment address specified by src into a flat address and stores the
result in the destination register dest. The destination register size must match the
flat address size. If the source is a register, it must match the size of the segment
address. (See 2.10 Small and Large Machine Models (p. 20).

Examples

// large machine model conversions
stof_private_u64_u32 $d1, $s1;
ftos_group_u32_u64 $s1, $d2;
ftos_global_u64_u64 $d1, $d2;

// small machine model conversions
stof_private_u32_u32 $s1, $s2;
ftos_group_u32_u32 $s1, $s2;
ftos_global_u32_u32 $s1, $s2;

5.17 Compare (cmp) Operation
The compare (cmp) operation compares two numeric values. The value written
depends on the type of destination dest.

cmp compares register-sized values, with one exception: for f16, cmp uses the
implementation-defined f16 register format for register operands, and immediate
f16 values are converted to the implementation-defined register format before the
comparison (see 4.21 Floating-Point Numbers (p. 54)).

cmp also supports packed operands, returning one result per element.

The ftz (flush to zero) modifier, which forces subnormal values to zero, is supported
if the source operand type is floating-point.

If the operation supports ftz and the Base profile has been specified, then ftz must
be specified (see 17.2.2 Base Profile Requirements (p. 243)). Otherwise, it is optional.

If ftz is specified, the source operands that are subnormal values must be flushed to
zero before performing the compare operation.

If the source operands are floating-point, and the comparison operation is not an s
form, and one or more of them is a signaling NaN, then an invalid operation exception
must be generated (see Chapter 13 Exceptions (p. 219)).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 111

Floating-point comparison is required to follow IEEE/ANSI Standard 754-2008.

See Table 5–23 (p. 112) and Table 5–24 (p. 112).

5.17.1 Syntax

Table 5–23 Syntax for Compare (cmp) Operation

Opcode and Modifiers Operands

cmp_op_ftz_destTypedestLength_srcTypesrcLength dest, src0, src1

Explanation of Modifiers (see Table 4–2 (p. 46))

op for bit types: eq and ne.

op for integer source types: eq, ne, lt, le, gt, ge.

op for floating-point source types: eq, ne, lt, le, gt, ge, equ, neu, ltu, leu, gtu, geu, num, nan and signaling
NaN forms seq, sne, slt, sle, sgt, sge, sequ, sneu, sltu, sleu, sgtu, sgeu, snum, snan.

ftz: Only valid for floating-point source types. Required if the Base profile has been specified, otherwise
optional. If specified, forces subnormal values to zero, otherwise subnormal values are not flushed to zero.

destTypedestLength: Describes the destination.

destType: b, u, s, f.

destLength: 32, 64; 1 if source type is b; 16 if source type is f.

srcTypesrcLength: Describes the two sources.

srcType: b, u, s, f.

srcLength: 32, 64; 1 if source type is b; 16 if source type is f.

Explanation of Operands

dest: Destination register.

src0, src1: Sources. Each source can be a register, immediate value, or WAVESIZE.

Exceptions (see Chapter 13 Exceptions (p. 219))

sNaN floating-point numbers generate the invalid operation exception, except for the s comparison forms.

Table 5–24 Syntax for Packed Version of Compare (cmp) Operation

Opcode and Modifiers Operands

cmp_op_ftz_pp_uLength_TypeLength dest, src0, src1

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

112 Arithmetic Operations  

Explanation of Modifiers (see 4.14.2 Packed Data (p. 46))

op: See table above.

ftz: See table above.

Type: s, u, f.

Length: 8x4, 8x8, 8x16, 16x2, 16x4, 16x8, 32x2, 32x4, 64x2

Explanation of Operands

dest: Destination register. This operation performs an element-by-element compare and puts the result
in the destination. dest must be a packed register of equal dimension as the sources. Each element in the
packed destination is written to either all 1's (for true) or all 0's (for false) based on the result of each
element-wise compare.

src0, src1: Sources. Must be a packed register or a constant value.

Exceptions (see Chapter 13 Exceptions (p. 219))

sNaN floating-point numbers generate the invalid operation exception, except for the s comparison forms.

For BRIG syntax, see 19.10.1.16 BRIG Syntax for Compare (cmp) Operation (p. 307).

5.17.2 Description for cmp Operation

The table below shows the value written into the destination dest.

Type of dest True False

floating-point 1.0 0.0

integer 0xffffffff 0

control 1 0

eq, ne
These are the only compares that support the bit types as inputs.

num
Returns true if both floating-point source operands are numeric values (not NaN).

nan
Returns true if either floating-point source operand is NaN.

The ordered integer and floating-point comparisons are: eq, ne, lt, le, gt, ge. If either
floating-point source operand is NaN, the result is false.

The unordered floating-point comparisons are: equ, neu, ltu, leu, gtu, geu. If both
operands are numeric values (not NaN), then these comparisons have the same result
as the ordered compare. If either operand is NaN, then the result of these comparisons
is true.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 113

Floating-point comparison ignores the sign of zero (so +0.0 equals −0.0), and infinite
operands of the same sign compare as equal.

There are s forms of both the floating-point ordered and unordered comparisons. For
example, sle is the s form of le. The difference between the s forms and non-s forms
is in the way sNaNs are treated. For most floating-point operations, if one or both
sources is an sNaN, an invalid operation exception will be generated. The floating-
point compares are the exception: the non-s forms can trigger an exception while the
s forms never generate an exception.

Examples

cmp_eq_b1_b1 $c1, $c2, 0;
cmp_eq_b32_b1 $s1, $c2, 0;
cmp_eq_f32_b1 $s1, $c2, 1;

cmp_ne_b1_b1 $c1, $c2, 0;
cmp_ne_b32_b1 $s1, $c2, 0;
cmp_ne_f32_b1 $s1, $c2, 1;

cmp_lt_b1_b32 $c1, $s2, 0;
cmp_lt_b32_b32 $s1, $s2, 0;
cmp_lt_f32_f32 $s1, $s2, 0.0f;

cmp_gt_b1_b32 $c1, $s2, 0;
cmp_gt_b32_b32 $s1, $s2, 0;
cmp_gt_f32_b32 $s1, $s2, 0.0f;

cmp_equ_b1_f32 $c1, $s2, 0f;
cmp_equ_b1_f64 $c1, $d1, $d2;

cmp_sltu_b1_f32 $c1, $s2, 0f;
cmp_sltu_b1_f64 $c1, $d1, $d2;

cmp_lt_pp_u8x4_u8x4 $s1, $s2, $s3;
cmp_lt_pp_u16x2_f16x2 $s1, $s2, $s3;
cmp_lt_pp_u32x2_f32x2 $d1, $d2, $d3;

5.18 Conversion (cvt) Operation

5.18.1 Overview

The conversion operation converts a value with a particular type and length to
another value with a different type and/or length, or applies rounding to a value with
a particular type and length to another value with the same type and length.

Conversion operations generally specify different types and lengths for both the
destination and the source operands.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

114 Arithmetic Operations  

For floating point source types, if the source value is a signaling NaN, an invalid
operation exception must be generated. If the source is a NaN and the result is a
floating-point type, then the result must be a quiet NaN with the following value:

• If the source and destination floating-point types are not the same, then the
source NaN payload is not preserved, because the types are different sizes.
However, the sign must be preserved.

• Otherwise if the Base profile has been specified (see 17.2.2 Base Profile
Requirements (p. 243)), it is implementation-defined if the NaN payload of the
source is preserved. However, the sign must be preserved.

• Otherwise the NaN produced must be bit-identical to the source, except a
signaling NaN must be converted to a quiet NaN.

The ftz (flush to zero) modifier, which forces subnormal values to zero, is supported
for conversion operations if the source type is floating-point. ftz is not allowed in any
other cases.

If ftz is allowed and the Base profile has been specified, then ftz must be specified
(see 17.2.2 Base Profile Requirements (p. 243)). Otherwise, if ftz is allowed, it is
optional.

If ftz is specified, the source operand must be flushed to zero if it is a subnormal value,
before performing the conversion operation. Any exceptions generated by the
conversion are based on the flushed source value.

If the source operand type is b1 or an integer type, it is allowed to have a register that
is wider than the source type length. In this case, the least significant bits are used.

If the destination operand type is b1 or an integer type, it is allowed to have a register
that is wider than the destination type length. In this case, the conversion operations
first transform the source to the destination type. The converted result is then zero-
extended for b1 and u types, and sign-extended for s types, to the size of the register.

A conversion acts as a move operation if the source and destination operand types are
the following: b1, integer types with the same size, or floating-point types with the
same size. For the b1 and integer types, the move can be preceded by a truncation if
the source operand is larger than the type, and followed by a zero extension or sign
extension if the destination register is larger than the type.

No packed formats are supported.

Table 5–25 (p. 115) shows how the first step of the conversion operation does the
transformation. The table uses the notation defined in Table 5–26 (p. 116).

Table 5–25 Conversion Methods
Source

b1
Source

u8
Source

s8
Source

u16
Source

s16
Source

f16
Source

u32
Source

s32
Source

f32
Source

u64
Source

s64
Source

f64

Destination
b1

- ztest ztest ztest ztest ztest ztest ztest ztest ztest ztest ztest

Destination
u8

zext - - chop chop h2u chop chop f2u chop chop d2u

Destination
s8

zext - - chop chop h2s chop chop f2s chop chop d2s

Destination
u16

zext zext sext - - h2u chop chop f2u chop chop d2u

Destination
s16

zext zext sext - - h2s chop chop f2s chop chop d2s

Destination
f16

u2h u2h s2h u2h s2h - u2h s2h f2h u2h s2h d2h

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 115

Source
b1

Source
u8

Source
s8

Source
u16

Source
s16

Source
f16

Source
u32

Source
s32

Source
f32

Source
u64

Source
s64

Source
f64

Destination
u32

zext zext sext zext sext h2u - - f2u chop chop d2u

Destination
s32

zext zext sext zext sext h2s - - f2s chop chop d2s

Destination
f32

u2f u2f s2f u2f s2f h2f u2f s2f - u2f s2f d2f

Destination
u64

zext zext sext zext sext h2u zext sext f2u - - d2u

Destination
s64

zext zext sext zext sext h2s zext sext f2s - - d2s

Destination
f64

u2d u2d s2d u2d s2d h2d u2d s2d f2d u2d s2d -

Table 5–26 Notation for Conversion Methods
ztest For integer types, 1 if any input bit is 1, 0 if all bits are 0. For floating-point types, 1 if a non-zero

number, NaN, +inf or −inf; 0 if +0.0 or −0.0.

chop Delete all upper bits till the value fits.

zext Extend the value adding zeros on the left.

sext Extend the value, using sign extension.

f2u Convert 32-bit floating-point to unsigned.

f2h Convert 32-bit floating-point to 16-bit floating-point (half).

d2h Convert 64-bit floating-point (double) to 16-bit floating-point (half).

h2f Convert 16-bit floating-point (half) to 32-bit floating-point.

h2u Convert 16-bit floating-point (half) to unsigned.

h2d Convert 16-bit floating-point (half) to 64-bit floating-point (double).

d2u Convert 64-bit floating-point (double) to unsigned.

f2s Convert 32-bit floating-point to signed.

h2s Convert 16-bit floating-point (half) to signed.

d2s Convert 64-bit floating-point (double) to signed.

d2f Convert 64-bit floating-point (double) to 32-bit floating-point.

s2f Convert signed to 32-bit floating-point.

s2h Convert signed to 16-bit floating-point (half).

s2d Convert signed to 64-bit floating-point (double).

u2f Convert unsigned to 32-bit floating-point.

u2h Convert unsigned to 16-bit floating-point (half).

u2d Convert unsigned to 64-bit floating-point (double).

- Treat as a move.

5.18.2 Syntax

Table 5–27 Syntax for Conversion (cvt) Operation

Opcode and Modifiers Operands

cvt_ftz_round_destTypedestLength_srcTypesrcLength dest, src

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

116 Arithmetic Operations  

Explanation of Modifiers

ftz: Only valid if srcType is floating-point. Required if the Base profile has been specified, otherwise
optional. If specified, forces subnormal floating-point source and floating-point destination values to zero,
otherwise they are not flushed to zero.

round: Only valid if destType and/or srcType is floating-point, unless both are floating-point types and
destType size is equal to or larger than srcType size. Possible values are up, down, zero, near, upi ,
downi, zeroi, neari, upi_sat, downi_sat, zeroi_sat, and neari_sat. However, the allowed values
depend on the destType, srcType, and whether the Base profile has been specified (see 17.2.2 Base Profile
Requirements (p. 243)). In some cases, round can be omitted, and defaults to near or zeroi as appropriate.
See 5.18.3 Rules for Rounding for Conversions (p. 117), 5.18.4 Description of Integer Rounding Modes (p.
118), and 5.18.5 Description of Floating-Point Rounding Modes (p. 119).

destType: b, u, s, f. (For b, only b1 is supported.) See Table 4–2 (p. 46).

destLength: 1, 8, 16, 32, 64. (For 1, only b1 is supported.) See Table 4–2 (p. 46).

srcType: b, u, s, f. See Table 4–2 (p. 46).

srcLength: 1, 8, 16, 32, 64. 1 is only allowed for srcType of b. 1 and 8 are not allowed for srcType of f. See
Table 4–2 (p. 46).

Explanation of Operands

dest: Destination register.

src: Source. Can be a register, immediate value, or (if srcType is an integer type) WAVESIZE.

Exceptions (see Chapter 13 Exceptions (p. 219))

Floating-point exceptions are allowed.

For BRIG syntax, see 19.10.1.17 BRIG Syntax for Conversion (cvt) Operation (p. 308).

5.18.3 Rules for Rounding for Conversions

Rounding for conversions follows the rules shown in Table 5–28 (p. 117).

If the type of rounding is “floating-point,” the rounding mode can be omitted, in which
case it defaults to near.

If the type of rounding is “integer,” the desired rounding control must be explicitly
specified. (This makes it clear that integer conversion is occurring.)

If the type of rounding is “none,” then no rounding mode must be specified.

Table 5–28 Rules for Rounding for Conversions

From To Type of rounding Default rounding

f f (same size) none (must not specify rounding) none (no rounding performed)

f f (smaller size) floating-point near

f f (larger size) none (must not specify rounding) none (no rounding performed)

s or u f floating-point near

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 117

From To Type of rounding Default rounding

f s or u integer zeroi

f b1 none (must not specify rounding) none (always converts using ztest)

b1 f none (must not specify rounding) none (always converts to 0.0 or 1.0)

b1, s, or u b1, s, or u none (must not specify rounding) none (no rounding performed)

5.18.4 Description of Integer Rounding Modes

Integer rounding modes are used for floating-point to integer conversions. Integer
rounding modes are invalid in all other cases.

There are both regular and saturating integer rounding modes. They differ in the way
they handle numeric results that are outside the range of the destination integer type.
The floating-point source, after any flush to zero, is first rounded to an integral value
according to the rounding mode. Then this rounded result is checked to determine if
it is in range of the destination integer type.

A value is outside the range if it is a NaN, +inf, −inf, less than the smallest value that can
be represented by the destination integer type, or greater than the largest value that
can be represented by the destination integer type:

• For regular integer rounding modes, if the value is out of range, the result is
undefined and will generate an invalid operation exception.

• For saturating integer rounding modes, if the value is out of range, the value is
clamped to the range of the destination type, with NaN converted to 0.

If the source operand is a signaling NaN, an invalid operation exception must be
generated (see Chapter 13 Exceptions (p. 219)).

An inexact exception must be generated if the source value, after any flush to zero, is
in range but not an integral value.

The integer rounding mode can be omitted, in which case it defaults to zeroi. If the
Base profile has been specified (see 17.2.2 Base Profile Requirements (p. 243)), only
zeroi and zeroi_sat are allowed.

The regular integer rounding modes might execute faster than the saturating integer
rounding modes.

Regular Integer Rounding Modes

The regular integer rounding modes are:

• upi — Rounds up to the nearest integer greater than or equal to the exact result.

• downi — Rounds down to the nearest integer less than or equal to the exact result.

• zeroi — Rounds to the nearest integer toward zero.

• neari — Rounds to the nearest integer. If there is a tie, chooses an even integer.

Examples are:

If $s1 has the value 1.6, then:

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

118 Arithmetic Operations  

cvt_upi_f32_s32 $s2, $s1; // sets $s2 = 2
cvt_downi_f32_s32 $s2, $s1; // sets $s2 = 1
cvt_zeroi_f32_s32 $s2, $s1; // sets $s2 = 1
cvt_neari_f32_s32 $s2, $s1; // sets $s2 = 2

If $s1 has the value −1.6, then:

cvt_upi_f32_s32 $s2, $s1; // sets $s2 = -1
cvt_downi_f32_s32 $s2, $s1; // sets $s2 = -2
cvt_zeroi_f32_s32 $s2, $s1; // sets $s2 = -1
cvt_neari_f32_s32 $s2, $s1; // sets $s2 = -2

Saturating Integer Rounding Modes

The saturating integer rounding modes are:

• upi_sat

• downi_sat

• zeroi_sat

• neari_sat

If the source is a NaN, then the result is 0. Otherwise, the corresponding regular integer
rounding mode is first performed. Then for unsigned destination types: If the rounded
result is −inf or less than 0.0, then 0 is stored; if the rounded result is +inf or greater
than 2destLength−1, then 2destLength−1 is stored. Otherwise for signed destination types: If
the rounded result is −inf or less than −2destLength−1, then −2destLength−1 is stored; if the
rounded result is +inf or greater than 2destLength−1−1, then 2destLength−1−1 is stored.

5.18.5 Description of Floating-Point Rounding Modes

The floating-point rounding modes are:

• up — Rounds up to the nearest representable value that is greater than the
infinitely precise result.

• down — Rounds down to the nearest representable value that is less than the
infinitely precise result.

• zero — Rounds to the nearest representable value that is no greater in magnitude
than the infinitely precise result.

• near — Rounds to the nearest representable value. If there is a tie, chooses the
one with an even least significant digit.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Arithmetic Operations 119

Floating-point rounding modes are allowed in the following cases:

• A floating-point rounding mode is allowed for conversions from a floating-point
type to a smaller floating-point type. These conversions can lose precision.

The floating-point rounding mode can be omitted, in which case it defaults to
near. If the Base profile has been specified (see 17.2.2 Base Profile Requirements
(p. 243), only near is allowed.

Rounding is required to follow IEEE/ANSI Standard 754-2008 in generation of
exceptions and generation of returned values if exceptions are generated.

If the source operand is a signaling NaN, then an invalid operation exception
must be generated (see Chapter 13 Exceptions (p. 219)), and a non-signaling NaN
must be produced with the same sign as the source NaN.

After any flush to zero, if the converted value is not the same as the source value,
then an inexact exception must be generated.

If the source value is infinity, then the result is an infinity of the same sign. The
inexact exception is not generated.

It is implementation-defined if conversion generates underflow based on the
value before or after rounding, but an implementation must use the same
method for all operations. If the rounding specified by the conversion does
generate an underflow exception, and ftz is specified, then the result must be
set to 0.0 and the inexact exception generated if not already generated by the
rounding. Note that the flush to zero of the result is required to be based on the
generation of underflow, not on the result produced by rounding.

• A floating-point rounding mode is allowed for integer to floating-point
conversions. The floating-point rounding mode can be omitted, in which case it
defaults to near. If the Base profile has been specified (see 17.2.2 Base Profile
Requirements (p. 243), only near is allowed.

If the source value cannot be exactly represented in the destination type, then
an inexact exception must be generated.

Floating-point rounding modes are invalid in all other cases.

Examples

cvt_f32_f64 $s1, $d1;
cvt_upi_u32_f32 $s1, $s2;
cvt_ftz_f32_f32 $s1, $s2;
cvt_u32_f32 $s1, $s2;
cvt_f16_f32 $s1, $s2;
cvt_s32_u8 $s1, $s2;
cvt_s32_b1 $s1, $c2;
cvt_f32_f16 $s1, $s2;
cvt_s32_f32 $s1, $s2;
cvt_ftz_upi_s8_f32 $s1, $s2;

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

120 Arithmetic Operations  

Chapter 6

Memory Operations
This chapter describes the HSAIL memory operations.

6.1 Memory and Addressing
Note: See also 6.7 Examples of Memory Operations (p. 141).

Memory operations transfer data between registers and memory:

• The load operations move contents from memory to a register.

• The store operations move contents of a register into memory.

• The atomicReturn operations read a value from memory, update the memory
location, and set the destination to the original value.

• The atomicNoReturn operations read a value from memory and update the
memory location. (They do not have a destination.)

A flat memory, global, readonly, or kernarg segment address is a 32- or 64-bit value,
depending on the machine model. A group, private, spill, or arg segment address is
always 32 bits regardless of machine model. See 2.10 Small and Large Machine Models
(p. 20)). Each operation indicates the type of address.

Memory operations can do either of the following:

• Specify the particular segment used, in which case the address is relative to the
start of the segment.

• Use flat addresses, in which case hardware will recognize when an address is
within a particular segment.

See 2.8.3 Addressing for Segments (p. 17).

6.1.1 How Addresses Are Formed

The format of an address expression is given in 4.18 Address Expressions (p. 52).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Memory Operations 121

Every address expression has one or both of the following:

• Name in square brackets.

If the operation uses segment addressing, the name is converted to the
corresponding segment address. The behavior is undefined if the name is not in
the same segment specified in the memory operation.

• Register plus or minus an offset in square brackets.

Either the register or the offset can be optional. The size of the register must
match the size of the address required by the operation. For example, an s
register must be used for a group segment address, a d register must be used for
a global segment address in the large machine model, and an s register must be
used for a global address in the small machine model. See Table 2–3 (p. 20).

An address is formed from an address expression as follows:

1. Start with address 0.

2. If there is an identifier, add the byte offset of the variable referred to by the
identifier within its segment to the address. If the memory operation specifies
flat addressing, add the byte address of the start of the variable's segment. The
segment of the variable must be the same as the segment specified in the
operation using the address.

3. If there is a register, add the value of the register to the address.

4. If there is an offset, add or subtract the offset. The offset is read as a 64 bit integer
constant (see 4.13.1 Integer Constants (p. 41)).

All address arithmetic is done using unsigned two's complement arithmetic truncated
to the size of the address.

The address formed is then translated to an effective address to determine which
memory location is accessed. See 2.8.3 Addressing for Segments (p. 17).

If the resulting effective address value is outside the memory segment specified by
the operation, or is a flat address that is outside any segment, the result of the memory
segment operation is undefined.

For more information, see 4.18 Address Expressions (p. 52).

6.1.2 Memory Hierarchy

See Figure 6–1 (p. 123). This figure shows the memory hierarchy for an
implementation that has combined spill and arg with the private segment, and kernarg
and readonly with the global segment.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

122 Memory Operations  

Figure 6–1 Memory Hierarchy

The address does not need to be naturally aligned to a multiple of the item size.

The segment converting operations (ftos and stof) convert addresses between flat
address and segment address.

The segment checking operation (segmentp) can be used to check which segment
contains a particular flat address.

6.1.3 Alignment

A memory operation of size n bytes is “naturally aligned” if and only if its address is
an integer multiple of n. For example, naturally aligned 8-byte stores can only be to
addresses 0, 8, 16, 24, 32, and so forth.

HSAIL implementations can perform certain memory operations as a series of steps.

For example, an unaligned store might be implemented as a series of aligned stores,
as follows: A load (store) is naturally aligned if the address is a multiple of the amount
of data loaded (stored). Thus, storing four bytes at address 3 is not naturally aligned.
Under certain conditions, implementations could split this up into four separate 1-byte
stores.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Memory Operations 123

6.1.4 Equivalence Classes

Equivalence classes can be used to provide alias information to the finalizer.

Equivalence classes are specified with the ld and st operations.

There are 256 equivalence classes.

Class 0, the default, is general memory. It can interact with all other classes.

The finalizer will assume that any two memory operations in different classes N > 0
and M > 0 (with N not equal to M) do not overlap and can be reordered. Equivalence
classes in different segments never overlap.

For example, memory specified by the ld or st operations as class 1 can only interact
with class 1 and class 0 memory.

Memory specified as class 2 can only interact with class 2 and class 0 memory.

Memory specified as class 3 can only interact with class 3 and class 0 memory. And so
on.

6.2 Load (ld) Operation
The load (ld) operation loads from memory using a segment or flat address expression
(see 4.18 Address Expressions (p. 52)) and places the result into one or more registers.

There are four variants of the ld operation, depending on the number of destinations:
one, two, three, or four.

The size of the value loaded is specified by the operation's compound type. The value
is stored into the destination register following the rules in 4.17 Operands (p. 50).
Integer values are sign-extended or zero-extended to fit the destination register size.
f16 values are converted to the implementation-defined register format (see 4.21
Floating-Point Numbers (p. 54)). No conversions are performed on other types. Use an
explicit cvt operation if floating-point conversion is required.

6.2.1 Syntax

Table 6–1 Syntax for Load (ld) Operation

Opcode and Modifiers Operands

ld_width_segment_aligned_sem_equiv(n)_TypeLength dest, address

ld_v2_width_segment_aligned_sem_equiv(n)_TypeLength (dest0,dest1), address

ld_v3_width_segment_aligned_sem_equiv(n)_TypeLength (dest0,dest1,dest2), address

ld_v4_width_segment_aligned_sem_equiv(n)_TypeLength (dest0,dest1,dest2,dest3), address

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

124 Memory Operations  

Explanation of Modifiers

v2, v3, and v4: Optimization flags. See the Description below.

width: Optional. Specifies the number of consecutive work-items in flattened ID order that are guaranteed
to load the same value. See the Description below.

segment: Optional segment: global, group, private, kernarg, readonly, spill, or arg. If omitted, flat is
used. See 2.8 Segments (p. 13).

aligned: Optional. See the Description below.

sem: Optional memory semantics flag. See the Description below.

equiv(n): Optional. n is an equivalence class. If omitted, class 0 is used. See 6.1.4 Equivalence Classes (p.
124).

Type: u, s, f. The Type specifies how the value is expanded to the size of the destination. See Table 4–2 (p.
46).

Length: 8, 16, 32, 64. The Length specifies the amount of data fetched from memory, and the amount to
increment the address when the destination is a vector operand. See Table 4–2 (p. 46).

TypeLength can also be b128, in which case dest must be a q register; or roimg, rwimg, or samp, in which
case dest must be a d register.

Explanation of Operands

dest, dest0, dest1, dest2, dest3: Destination registers.

address: Address to be loaded from.

Exceptions (see Chapter 13 Exceptions (p. 219))

Invalid address exceptions are allowed. May generate a memory exception if address is unaligned and the
aligned modifier has been specified.

For BRIG syntax, see 19.10.2 BRIG Syntax for Memory Operations (p. 308).

6.2.2 Description

v2, v3, and v4
These flags are strictly optimizations. When v2, v3, or v4 is used, HSAIL will load
consecutive values into multiple registers. The address is incremented by the
Length in the operation. Front ends should generate vector forms whenever
possible.

The following forms are equivalent but the vector form is often faster.

Slow form:
ld_s32 $d0, [$s1];
ld_s32 $d1, [$s1+4];

Fast form using the vector:
ld_v2_s32 ($d0,$d1), [$s1];

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Memory Operations 125

width
Can be used to specify that consecutive work-items in flattened ID order will load
the same address.

The value can be width(n), width(WAVESIZE), or width(all).

Implementations are allowed to have a single work-item read the value and then
broadcast the result to the other work-items. Some implementations can use this
modifier to speed up computations.

If work-items specified by width do not load the same address, the behavior is
undefined.

If width is not provided, every work-item can load data from a different address
(in other words, width(1) is the default).

See 2.13.1 Width Modifier (p. 22)).

aligned
If specified, indicates that the implementation can rely on the source address
having the natural alignment of the destination type. On some implementations,
this might be more efficient. It is undefined if a memory load marked as aligned is
in fact unaligned: on some implementations this might result in incorrect values
being loaded or memory exceptions being generated. See 18.6 Unaligned Access (p.
247). If aligned is omitted, the implementation must correctly handle the source
address being unaligned.

sem
Memory semantics flag, most commonly used for synchronization of memory
operations and read/write image operations.

For read/write images, the memory semantic flag applies only to read/write image
operations on the same HSA component.

Memory operations are the load, store, and atomic operations defined in this
chapter. Read/write image operations are the rdimage, ldimage, stimage,
atomicimage, and atomicimagenoret operations defined in Chapter 7 Image
Operations (p. 147).

The flag can be acq or part_acq:

• acq creates a downward fence. This means that memory and read/write
image operations can be moved (by the implementation) down after the
ld_acq, but no memory or read/write image operation can be moved before
this point. An ld_acq marks this memory operation as synchronizing: all
synchronizing operations will stay in order.

One common use of ld_acq is to acquire a lock for synchronization. In this
case, no code in a critical section after the lock can be moved out of the critical
section above the load of the lock. However, code before the lock is acquired
can be moved into the critical section.

• part_acq specifies that no memory or read-write image operation can be
moved before this point as far as this work-group can see, but other work-
groups are allowed to see the memory and read-write image operations on
the same HSA component in a different order.

If omitted, the load will be an ordinary (not synchronizing) load.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

126 Memory Operations  

6.2.3 Additional Information

If segment is present, the address expression must be a segment address of the same
kind. If segment is omitted, the address expression must be a flat address. See 6.1.1
How Addresses Are Formed (p. 121).

It is not valid to use a flat load operation with an identifier. The following code is not
valid:
ld_b64 $s1, [&g]; // not valid because address expression is a segment
 // address, but a flat address is required.

If ld_v2, ld_v3, or ld_v4 is used, then all the registers must be the same size.

Subword integer type values are extended to fill the destination register. s types are
sign-extended, u types are zero-extended. Rules for this are:

• ld_s8 — Loads a value between −128 and 127 inclusive into the destination
register.

• ld_u8 — Loads a value between 0 and 255 inclusive into the destination register.

• ld_s16 — Loads a value between −32768 and 32767 into the destination register.

• ld_u16 — Loads a value between 0 and 65535 inclusive into the destination
register.

• ld_s32 — Loads a value between −2,147,483,648 and 2,147,483,647 inclusive into
the destination register.

• ld_u32 — Loads a value between 0 and 4,294,967,296 inclusive into the destination
register.

The ld_s32 and ld_u32 operations result in identical results when targeting a 32-bit
register, because no sign extension or zero extension is required. They are provided
to make the code more readable.

ld_s and ld_u always produce the same value when the operation size is the same as
the destination size. However, ld_s sign-extends while ld_u zero-extends when the
destination is larger than the destination size.

For example, ld_u8 $d2 loads one byte and zero-extends to 64 bits.

A front-end compiler should use ld_s when the sign is relevant and ld_u when it is
not. Then readers of the program can better understand the significance of what is
being loaded.

In some cases, a memory system might break up a single load into fragments, treating
the single ld operation as though it was made up of multiple separate small loads.
Between each small load, other work-items can write the same addresses, and the
work-items might see a mix of old and new values. A load has read atomicity of size
b if it cannot read as fragments that are smaller than b bits.

In the small machine model, b is 32 (see 2.10 Small and Large Machine Models (p. 20)).
Consider the following load:
ld_global_v4_f64 ($d1,$d3,$d2,$d5), [&x];

Implementations are allowed to break up this load into at most eight (nine if the
address is unaligned) separate loads, each loading 32 bits.

In the large machine model, b is 64, so implementations can break the same load into
at most four (five if the address is unaligned) separate loads, each loading 64 bits.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Memory Operations 127

All forms of loads have 64-bit (32-bit for small machine model) naturally aligned read
atomicity. This property also applies to each fragment of an unaligned load.

Ordinary loads have the following characteristics:

• They happen as a single operation within a window of fragment size.

• Loads that are larger than a fragment can be broken up into unordered loads of
naturally aligned loads, each no larger than a fragment.

• Ordinary loads can be reordered by either the finalizer or hardware. Load
reordering can be prevented by using some kind of synchronization operation.
For example, a ld_acq acts like a partial fence; no memory operation after the
ld_acq can be moved before the ld_acq.

• An ordinary load is allowed to satisfy an ordinary store from its own or a
different work-item (before the load is visible to all agents in the system).

• An ordinary load is not allowed to fulfill an atomic operation from its own work-
item (before the load is visible to all agents in the system).

Examples

ld_global_f32 $s1, [&x];
ld_global_s32 $s1, [&x];
ld_global_f16 $s1, [&x];
ld_global_f64 $d1, [&x];
ld_global_aligned_f64 $d1, [&x];
ld_width(64)_global_f16 $s1, [&x];
ld_width_global_aligned_f16 $s1, [&x];
ld_global_acq_f32 $s1, [&x];
ld_global_acq_f64 $d1, [&x];
ld_global_acq_equiv(2)_f32 $s1, [&x];
ld_global_acq_equiv(2)_f32 $s1, [$s3+4];
ld_arg_acq_equiv(2)_f32 $s1, [&y];
ld_private_f32 $s1, [$s3+4];
ld_spill_f32 $s1, [$s3+4];
ld_f32 $s1, [$s3+4];
ld_aligned_f32 $s1, [$s3+4];
ld_v3_s32 ($s1,$s1,$s6), [$s3+4];
ld_v4_f32 ($s1,$s1,$s6,$s2), [$s3+4];
ld_v2_equiv(9)_f32 ($s1,$s2), [$s3+4];
ld_group_equiv(0)_u32 $s0, [$s2];
ld_equiv(1)_u64 $d3, [$s4+32];
ld_v2_equiv(1)_u64 ($d1,$d2), [$s0+32];
ld_width(8)_v4_f32 ($s1,$s1,$s6,$s2), [$s3+4];
ld_equiv(1)_u64 $d6, [128];
ld_width(4)_v2_equiv(9)_f32 ($s1,$s2), [$s3+4];
ld_width(64)_u32 $s0, [$s2];
ld_width(1024)_equiv(1)_u64 $d6, [128];
ld_width(all)_equiv(1)_u64 $d6, [128];
ld_readonly_rwimg $d1, [&rwimage1];
ld_global_roimg $d2, [&roimage1];
ld_kernarg_samp $d3, [&sampler1];

6.3 Store (st) Operation
The store (st) operation stores a value from a register or immediate (see 4.17 Operands
(p. 50)) into memory using a segment or flat address expression (see 4.18 Address
Expressions (p. 52)).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

128 Memory Operations  

There are four variants of the store operation, depending on the number of sources:
one, two, three, or four.

6.3.1 Syntax

Table 6–2 Syntax for Store (st) Operation

Opcode and Modifiers Operands

st_segment_aligned_sem_equiv(n)_TypeLength src0, address

st_v2_segment_aligned_sem_equiv(n)_TypeLength (src0,src1), address

st_v3_segment_aligned_sem_equiv(n)_TypeLength (src0,src1,src2), address

st_v4_segment_aligned_sem_equiv(n)_TypeLength (src0,src1,src2,src3), address

Explanation of Modifiers

v2, v3, and v4: Optimization flags. See the Description below.

segment: Optional segment: global, group, private, spill, or arg. If omitted, flat is used. See 2.8 Segments
(p. 13).

aligned: Optional. If specified, indicates that the store operation can rely on the destination address having
the natural alignment of the destination type. If omitted, the store operation must allow the destination
address to be unaligned. See the Description below.

sem: Optional memory semantics flag. See the Description below.

equiv(n): Optional. n is an equivalence class. If omitted, class 0 is used. See 6.1.4 Equivalence Classes (p.
124).

Type: u, s, f. The Type specifies how the value is expanded to the size of the destination. See Table 4–2 (p.
46).

Length: 8, 16, 32, 64. The Length specifies the amount of data fetched, and the amount to increment the
address when the destination is a vector operand. See Table 4–2 (p. 46).

TypeLength can also be b128, in which case src0 must be a q register; or roimg, rwimg, or samp, in which
case dest must be a d register.

Explanation of Operands

src0, src1, src2, src3: Sources. Must be registers or immediates.

address: Address to be stored into.

Exceptions (see Chapter 13 Exceptions (p. 219))

Invalid address exceptions are allowed. May generate a memory exception if address is unaligned and the
aligned modifier has been specified.

For BRIG syntax, see 19.10.2 BRIG Syntax for Memory Operations (p. 308).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Memory Operations 129

6.3.2 Description

v2, v3, and v4
These flags are strictly optimizations. When v2, v3, or v4 is used, HSAIL will store
consecutive values from multiple registers. The address is incremented by the size
of the operation type between elements. Front ends should generate vector forms
whenever possible.

For example, this code:
st_v4_u8 ($s1, $s2, $s3, $s4), [120];

does the following:

• Stores the lower 8 bits of $s1 into address 120.

• Stores the lower 8 bits of $s2 into address 121.

• Stores the lower 8 bits of $s3 into address 122.

• Stores the lower 8 bits of $s4 into address 123.

On certain hardware implementations, it is faster to write 64 or 128 bits in a single
operation.

aligned
If the aligned modifier is not present, then the finalizer must generate code to
correctly handle unaligned memory stores.

If the aligned modifier is present,then the finalizer can generate code that assumes
the memory store is naturally aligned. On some implementations this might be
more efficient.

It is undefined if a memory store marked as aligned is in fact unaligned. On some
implementations, this can result in incorrect values being stored, values in other
memory locations being modified, and memory exceptions being generated. See
18.6 Unaligned Access (p. 247).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

130 Memory Operations  

sem
Memory semantics flag, most commonly used for synchronization of memory
operations and read/write image operations.

For read/write images, the memory semantic flag applies only to read/write image
operations on the same HSA component.

Memory operations are the load, store, and atomic operations defined in this
chapter. Read/write image operations are the rdimage, ldimage, stimage,
atomicimage, and atomicimagenoret operations defined in Chapter 7 Image
Operations (p. 147).

The flag can be rel or part_rel:

• rel creates an upward fence (basically a one-way fence operation). That is,
memory and read/write image operations can be moved before the st_rel
but no memory or read-write image operation can be moved after the
st_rel. A st_rel is a synchronizing operation that will stay ordered with all
other synchronizing operations.

• part_rel specifies that no memory or read-write image operations before
this point can be moved after this point as far as this work-group can see, but
other work-groups are allowed to see the memory or read-write image
operations on the same HSA component in a different order.

If omitted, the store will be an ordinary (not synchronizing) store.

6.3.3 Additional Information

If segment is present, the address expression must be a segment address of the same
kind. If segment is omitted, the address expression must be a flat address. See 6.1.1
How Addresses Are Formed (p. 121).

It is not valid to use a flat store operation with an identifier. The following code is not
valid:
st_b64 $s1, [&g]; // not valid because address expression is a segment
 // address, but a flat address is required.

If st_v2, st_v3, or st_v4 is used, then all the registers must be the same size.

Subword integer values are extracted from the least significant bits of the source
register. Storing a 256 with a st_s8 writes a zero (least significant 8 bits) into memory.
For other integer types, the size of the source and destination must match.

For f32 and f64, the size of the source and destination must match. If a conversion is
required, then it should be done explicitly using a cvt operation.

For f16, if the source is a register, it must be an s register. It is converted from the
implementation-defined register representation to the memory representation
before the store (see 4.21 Floating-Point Numbers (p. 54)).

In some cases, a memory system might break up a single store into fragments, treating
the single st operation as though it was made up of multiple separate small stores.
Between each fragment store, other work-items can read the same addresses, and the
work-items might see a mix of old and new values. A store has write atomicity of size
b if it cannot be broken up into fragments that are smaller than b bits.

In the small machine model, b is 32 (see 2.10 Small and Large Machine Models (p. 20)).
Consider the following store:

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Memory Operations 131

st_v4_global_f64 ($d1, $d3, $d2, $d5), [&x];

Implementations are allowed to break up this store into at most eight (nine if the
address is unaligned) separate stores, each storing 32 bits.

In the large machine model, b is 64, so implementations can break the same store into
at most four (five if the address is unaligned) separate stores, each storing 64 bits.

All forms of stores have 64-bit (32-bit for small machine model) naturally aligned write
atomicity. This property also applies to each fragment of an unaligned store.

Ordinary stores have the following characteristics:

• They happen as a single operation within a window of fragment size.

• Stores that are larger than a fragment can be broken up into unordered stores
of naturally aligned stores, each no larger than a fragment.

• Ordinary stores can be reordered by either the finalizer or hardware. Store
reordering can be prevented by using some kind of synchronization operation.
For example, a st_rel acts like a partial fence; no memory operation before the
st_rel can be moved after the st_rel.

• An ordinary store is allowed to satisfy an ordinary load from its own or a
different work-item (before the store is visible to all agents in the system).

• An ordinary store is not allowed to fulfill an atomic operation from its own work-
item (before the store is visible to all agents in the system).

Examples

st_global_f32 $s1, [&x];
st_global_aligned_f32 $s1, [&x];
st_global_u8 $s1, [&x];
st_global_u16 $s1, [&x];
st_global_u32 $s1, [&x];
st_global_f16 $s1, [&x];
st_global_f64 $d1, [&x];
st_global_aligned_f64 $d1, [&x];
st_global_rel_f32 $s1, [&x];
st_global_rel_f64 $d1, [&x];
st_global_rel_equiv(2)_f32 $s1, [&x];
st_rel_equiv(2)_f32 $s1, [$s3+4];
st_private_f32 $s1, [$s3+4];
st_global_f32 $s1, [$s3+4];
st_spill_f32 $s1, [$s3+4];
st_arg_f32 $s1, [$s3+4];
st_f32 $s1, [$s3+4];
st_aligned_f32 $s1, [$s3+4];
st_v4_f32 ($s1,$s1,$s6,$s2), [$s3+4];
st_v2_equiv(9)_f32 ($s1,$s2), [$s3+4];
st_v3_s32 ($s1,$s1,$s6), [$s3+4];
st_group_equiv(0)_u32 $s0, [$s2];
st_equiv(1)_u64 $d3, [$s4+32];
st_aligned_equiv(1)_u64 $d3, [$s4+32];
st_v2_equiv(1)_u64 ($d1,$d2), [$s0+32];
st_equiv(1)_u64 $d6, [128];
st_group_rwimg $d1, [&rwimage2];
st_private_rwimg $d1, [&rwimage2];
st_global_roimg $d2, [&roimage2];
st_kernarg_samp $d3, [&sampler2];

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

132 Memory Operations  

6.4 Atomic Operations: atomic and atomicnoret
There are two types of atomic operations, which may be implemented in a variety of
ways: ordinary and synchronizing.

Synchronizing atomics act like an acquire or an acquire and release. In the acquire-
only case, a synchronizing atomic acts like a downward fence. In the acquire and
release case, a synchronizing atomic forms a full fence: no memory operation can be
moved before or after.

In all cases, the atomic operation is executed atomically such that it is not possible for
any work-item or agent in the system to observe or modify the memory location
during the atomic sequence.

It is guaranteed that when a work-item issues an atomic operation on a memory
address, no write to the same address from outside the current atomic operation by
any work-item can occur between the atomic read and write.

If multiple atomic operations from different work-items target the same address, the
operations are serialized in an undefined order.

Ordinary atomic operations have the following characteristics:

• An atomic sequence happens as a single operation. No other memory operation
can change the data between the load and store of the atomics.

• Unaligned atomics are not allowed and can result in undefined behavior or
generate a memory exception.

• Ordinary atomics that do not return values can be reordered by the finalizer or
by hardware.

Synchronizing atomics first do an acquire to read the memory value and then,
possibly, a release to store the changed value.

Atomic accesses to segments other than global and group by means of a flat address
is undefined behavior.

HSAIL provides two kinds of atomic operations:

• Atomic operations, which read, modify, and write. Each atomic operation
returns the value that is read before the modification.

• Atomic no return operations, which are the same as the atomic operations but
do not return a value.

For both atomic and atomic no return operations, the address must be naturally
aligned to a multiple of the access size. If the addresses are not naturally aligned, then
the result is undefined and might generate a memory exception.

Acquire and acquire/release semantics are allowed for both atomic and atomic no
return operations.

For atomic operations, the dest (destination) field is required. Compilers should
identify cases where the result is not needed and whenever possible, they should
generate the faster atomic no return operations if they do not need the result.

For more information, see 6.5 Atomic (atomic) Operations (p. 134) and 6.6 Atomic No
Return (atomicnoret) Operations (p. 138).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Memory Operations 133

6.5 Atomic (atomic) Operations
The atomic operations read a value from memory, set the destination to the original
value, and update the memory location.

These operations atomically load the value at address into dest, perform a reduction
operation with modifier data and src0 (and, with atomic_cas, with src1), and store
the result of the operation at address, overwriting the original value.

For atomic operations, accesses to private, spill, and arg memory are illegal.

6.5.1 Syntax

Table 6–3 Syntax for Atomic Operations

Opcode and Modifiers Operands

atomic_and_segment_sem_TypeLength dest, address, src0

atomic_or_segment_sem_TypeLength dest, address, src0

atomic_xor_segment_sem_TypeLength dest, address, src0

atomic_exch_segment_sem_TypeLength dest, address, src0

atomic_add_segment_sem_TypeLength dest, address, src0

atomic_sub_segment_sem_TypeLength dest, address, src0

atomic_inc_segment_sem_TypeLength dest, address, src0

atomic_dec_segment_sem_TypeLength dest, address, src0

atomic_max_segment_sem_TypeLength dest, address, src0

atomic_min_segment_sem_TypeLength dest, address, src0

atomic_cas_segment_sem_TypeLength dest, address, src0, src1

Explanation of Modifiers

segment: Optional segment: global or group. If omitted, flat is used, and address must be in the global or
group segment. See 2.8 Segments (p. 13).

sem: Optional memory semantics flag, most commonly used for synchronization. If omitted, the load will
be an ordinary (not synchronizing) load. The flag can be acq (acquire), ar (acquire and release), or
part_ar (partial acquire and release).

acq specifies that no memory operation (load, store, or atomic) can be moved before this point.

ar specifies that no memory operation (load, store, or atomic) can be moved before this point. In addition,
no memory operation can be moved after this point.

part_ar specifies that no memory operation (load, store, or atomic) can be moved before this point as far
as this work-group can see, but other work-groups are allowed to see the memory operations in a different
order.

Type: b for and, or, xor, exch, cas; u and s for add, sub, max, min; u for inc and dec. See Table 4–2 (p. 46).

Length: 32, 64. See Table 4–2 (p. 46). 64 is not allowed for small machine model (see 2.10 Small and Large
Machine Models (p. 20)).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

134 Memory Operations  

Explanation of Operands

dest: Destination register.

address: Source location in the specified segment. Must be an address.

src0, src1: Sources. Can be a register, immediate value, or WAVESIZE.

Exceptions (see Chapter 13 Exceptions (p. 219))

Invalid address exceptions are allowed. May generate a memory exception if address is unaligned.

For Brig syntax, see 19.10.2 BRIG Syntax for Memory Operations (p. 308).

6.5.2 Description of Atomic and Atomic No Return Operations

and
ANDs the contents of the address with the value in src0. For the atomic operation,
sets dest to the original contents of the address.

or
ORs the contents of the address with the value in src0. For the atomic operation,
sets dest to the original contents of the address.

xor
XORs the contents of the address with the value in src0. For the atomic operation,
sets dest to the original contents of the address.

exch
Replaces the contents of the address with src0. Sets dest to the original contents
of the address.

Note: There is no atomic no return version of this operation.

add
Adds (using integer arithmetic) the contents of the address with the value in src0.
For the atomic operation, sets dest to the original contents of the address.

sub
Subtracts (using integer arithmetic) the contents of the address from the value in
src0. For the atomic operation, sets dest to the original contents of the address.

min, max
Compares src0 to the value in the address and sets the address to the minimum/
maximum of the original value and src0. Then, for the atomic operation, sets
dest to the original contents of the address.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Memory Operations 135

inc
Increments the contents of the address using the formula:

[address] = ([address] >= src0) ? 0 : [address] + 1

After the operation, the contents of the address will be in the range [0, src0]
inclusive. For the atomic operation, sets dest to the original contents of the
address.

Note: Only unsigned increment is available.

dec
Decrements the contents of the address using the formula:

[address] = (([address] == 0) || ([address] > src0)) ? src0 :
 [address] - 1

After the operation, the contents of the address will be in the range [0, src0]
inclusive. For the atomic operation, sets dest to the original contents of the
address.

Note: Only unsigned decrement is available.

cas
Compare and swap. If the original contents of the address are equal to src0, then
the contents of the location are replaced with src1. For the atomic operation, sets
dest to the original contents of the address, regardless of whether the replacement
was done.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

136 Memory Operations  

Examples

atomic_and_global_ar_u32 $s1, [&x], 23;
atomic_and_global_u32 $s1, [&x], 23;
atomic_and_group_u32 $s1, [&x], 23;
atomic_and_u32 $s1, [$s2], 23;

atomic_or_global_ar_u64 $d1, [&x], 23;
atomic_or_global_u64 $d1, [&x], 23;
atomic_or_group_u64 $d1, [&x], 23;
atomic_or_u64 $d1, [$s4], 23;

atomic_xor_global_ar_b64 $d1, [&x], 23;
atomic_xor_global_b64 $d1, [&x], 23;
atomic_or_group_u64 $d1, [&x], 23;
atomic_or_u64 $d1, [$s3], 23;

atomic_cas_global_ar_b64 $d1, [&x], 23, 12;
atomic_cas_global_b64 $d1, [&x], 23, 1;
atomic_cas_group_u64 $d1, [&x], 23, 9;
atomic_cas_u64 $d1, [$s5], 23, 12;

atomic_exch_global_ar_b64 $d1, [&x], 23;
atomic_exch_global_b64 $d1, [&x], 23;
atomic_exch_group_u64 $d1, [&x], 23;
atomic_exch_u64 $d1, [$s4], 23;

atomic_add_global_ar_b64 $d1, [&x], 23;
atomic_add_global_b64 $d1, [&x], 23;
atomic_add_group_u64 $d1, [&x], 23;
atomic_add_u64 $d1, [$s6], 23;

atomic_sub_global_ar_b64 $d1, [&x], 23;
atomic_sub_global_b64 $d1, [&x], 23;
atomic_sub_group_u64 $d1, [&x], 23;
atomic_sub_u64 $d1, [$s3], 23;

atomic_inc_global_ar_b64 $d1, [&x], 23;
atomic_inc_global_b64 $d1, [&x], 23;
atomic_inc_group_u64 $d1, [&x], 23;
atomic_inc_u64 $d1, [$s3], 23;

atomic_dec_global_ar_b64 $d1, [&x], 23;
atomic_dec_global_b64 $d1, [&x], 23;
atomic_dec_group_u64 $d1, [&x], 23;
atomic_dec_u64 $d1, [$s4], 23;

atomic_max_global_ar_s64 $d1, [&x], 23;
atomic_max_global_b64 $d1, [&x], 23;
atomic_max_group_u64 $d1, [&x], 23;
atomic_max_u64 $d1, [$s5], 23;

atomic_min_global_ar_s64 $d1, [&x], 23;
atomic_min_global_b64 $d1, [&x], 23;
atomic_min_group_u64 $d1, [&x], 23;

atomic_and_global_ar_b32 $s1, [&x], 23;
atomic_and_global_b32 $s1, [&x], 23;
atomic_and_group_b32 $s1, [&x], 23;
atomic_and_b32 $s1, [$s2], 23;

atomic_or_global_ar_b64 $d1, [&x], 23;
atomic_or_global_b64 $d1, [&x], 23;
atomic_or_group_b64 $d1, [&x], 23;
atomic_or_b64 $d1, [$s4], 23;

atomic_xor_global_ar_b64 $d1, [&x], 23;
atomic_xor_global_b64 $d1, [&x], 23;

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Memory Operations 137

atomic_xor_group_b64 $d1, [&x], 23;
atomic_xor_b64 $d1, [$s3], 23;

atomic_cas_global_ar_b64 $d1, [&x], 23, 12;
atomic_cas_global_b64 $d1, [&x], 23, 1;
atomic_cas_group_b64 $d1, [&x], 23, 9;
atomic_cas_b64 $d1, [$s5], 23, 12;

atomic_exch_global_ar_b64 $d1, [&x], 23;
atomic_exch_global_b64 $d1, [&x], 23;
atomic_exch_group_b64 $d1, [&x], 23;
atomic_exch_b64 $d1, [$s4], 23;

atomic_add_global_ar_u64 $d1, [&x], 23;
atomic_add_global_s64 $d1, [&x], 23;
atomic_add_group_u64 $d1, [&x], 23;
atomic_add_s64 $d1, [$s6], 23;

atomic_sub_global_ar_u64 $d1, [&x], 23;
atomic_sub_global_s64 $d1, [&x], 23;
atomic_sub_group_u64 $d1, [&x], 23;
atomic_sub_s64 $d1, [$s3], 23;

atomic_inc_global_ar_u64 $d1, [&x], 23;
atomic_inc_global_u64 $d1, [&x], 23;
atomic_inc_group_u64 $d1, [&x], 23;
atomic_inc_u64 $d1, [$s3], 23;

atomic_dec_global_ar_u64 $d1, [&x], 23;
atomic_dec_global_u64 $d1, [&x], 23;
atomic_dec_group_u64 $d1, [&x], 23;
atomic_dec_u64 $d1, [$s4], 23;

atomic_max_global_ar_s64 $d1, [&x], 23;
atomic_max_global_u64 $d1, [&x], 23;
atomic_max_group_s64 $d1, [&x], 23;
atomic_max_u64 $d1, [$s5], 23;

atomic_min_global_ar_s64 $d1, [&x], 23;
atomic_min_global_u64 $d1, [&x], 23;
atomic_min_group_s64 $d1, [&x], 23;
atomic_min_u64 $d1, [$s7], 23;
atomic_min_u64 $d1, [$s7], 23;

6.6 Atomic No Return (atomicnoret) Operations
The atomic no return operations read a value from memory and update the memory
location. (The atomic no return operations do not have a destination.)

The atomic no return operations atomically load the value at location address,
perform the operation with modifier data and operand src0 (and, with
atomicnoret_cas, with src1), and store the result in location address, overwriting the
original value.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

138 Memory Operations  

6.6.1 Syntax

Table 6–4 Syntax for Atomic No Return Operations

Opcodes and Modifiers Operands

atomicnoret_and_segment_sem_TypeLength address, src0

atomicnoret_or_segment_sem_TypeLength address, src0

atomicnoret_xor_segment_sem_TypeLength address, src0

atomicnoret_add_segment_sem_TypeLength address, src0

atomicnoret_sub_segment_sem_TypeLength address, src0

atomicnoret_inc_segment_sem_TypeLength address, src0

atomicnoret_dec_segment_sem_TypeLength address, src0

atomicnoret_max_segment_sem_TypeLength address, src0

atomicnoret_min_segment_sem_TypeLength address, src0

atomicnoret_cas_segment_sem_TypeLength address, src0, src1

Explanation of Modifiers

segment: Optional segment: global or group. If omitted, flat is used, and address must be in the global or
group segment. See 2.8 Segments (p. 13).

sem: Optional memory semantics flag, most commonly used for synchronization. If omitted, the load will
be an ordinary (not synchronizing) load. The flag can be acq (acquire), ar (acquire and release), or
part_ar (partial acquire and release).

acq specifies that no memory operation (load, store, or atomic) can be moved before this point.

ar specifies that no memory operation (load, store, or atomic) can be moved before this point. In addition,
no memory operation can be moved after this point.

part_ar specifies that no memory operation (load, store, or atomic) can be moved before or after this point
as far as this work-group can see, but other work-groups are allowed to see the memory operations in a
different order.

Type: b for and, or, xor, cas; u and s for add, sub, max, min; u for inc, dec. See Table 4–2 (p. 46).

Length: 32, 64. See Table 4–2 (p. 46). 64 is not allowed for small machine model (see 2.10 Small and Large
Machine Models (p. 20)).

Explanation of Operands

address: Source location in the specified segment. Must be an address.

src0, src1: Sources. Can be a register, immediate value, or WAVESIZE.

Exceptions (see Chapter 13 Exceptions (p. 219))

Invalid address exceptions are allowed. May generate a memory exception if address is unaligned.

For BRIG syntax, see 19.10.2 BRIG Syntax for Memory Operations (p. 308).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Memory Operations 139

6.6.2 Description

See 6.5.2 Description of Atomic and Atomic No Return Operations (p. 135).

The atomic no return operations change memory in the same way as the atomic
operations but do not have a destination.

Examples

atomicnoret_and_global_ar_b32 [&x], 23;
atomicnoret_and_global_b32 [&x], 23;
atomicnoret_and_group_b32 [&x], 23;
atomicnoret_and_b32 [$s1], 23;

atomicnoret_or_global_ar_b64 [&x], 23;
atomicnoret_or_global_b64 [&x], 23;
atomicnoret_or_group_b64 [&x], 23;
atomicnoret_or_b64 [$s2], 23;

atomicnoret_xor_global_ar_b64 [&x], 23;
atomicnoret_xor_global_b64 [&x], 23;
atomicnoret_xor_group_b64 [&x], 23;
atomicnoret_xor_b64 [$s3], 23;

atomicnoret_cas_global_ar_b64 [&x], 23, 12;
atomicnoret_cas_global_b64 [&x], 23, 1;
atomicnoret_cas_group_u64 [&x], 23, 9;
atomicnoret_cas_u64 [$s2], 23, 12;

atomicnoret_add_global_ar_u64 [&x], 23;
atomicnoret_add_global_s64 [&x], 23;
atomicnoret_add_group_u64 [&x], 23;
atomicnoret_add_s64 [$s4], 23;

atomicnoret_sub_global_ar_u64 [&x], 23;
atomicnoret_sub_global_s64 [&x], 23;
atomicnoret_sub_group_u64 [&x], 23;
atomicnoret_sub_s64 [$s5], 23;

atomicnoret_inc_global_ar_u64 [&x], 23;
atomicnoret_inc_global_u64 [&x], 23;
atomicnoret_inc_group_u64 [&x], 23;
atomicnoret_inc_u64 [$s2], 23;

atomicnoret_dec_global_ar_u64 [&x], 23;
atomicnoret_dec_global_u64 [&x], 23;
atomicnoret_dec_group_u64 [&x], 23;
atomicnoret_dec_u64 [$s6], 23;

atomicnoret_max_global_ar_u64 [&x], 23;
atomicnoret_max_global_s64 [&x], 23;
atomicnoret_max_group_u64 [&x], 23;
atomicnoret_max_s64 [$s3], 23;

atomicnoret_min_global_ar_u64 [&x], 23;
atomicnoret_min_global_s64 [&x], 23;
atomicnoret_min_group_u64 [&x], 23;
atomicnoret_min_s64 [$s4], 23;

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

140 Memory Operations  

6.7 Examples of Memory Operations

6.7.1 Examples Without Synchronization

This section shows examples without synchronization. The memory operations in
these examples are not ordered (provided the addresses are different).

Example 1

HSAIL uses relaxed ordering. This means that the memory system may not see the
operation in sequenced-before order, using memory operations without
synchronization, unless the addresses are the same.

Work-item 0 Work-item 1

@h0: st_global_u32 1, [&a] @k0: st_global_u32 1, [&b]

@h1: ld_global_u32 $s0, [&b] @k1: ld_global_u32 $s1, [&a]

Initially, &a and &b = 0.

$s0 = 0 and $s1 = 0 is allowed.

For each sequence, there are a number of edge constraints. First, there are the
constraints added because readers have to follow writers. For example, k1 (the reader)
has to happen before h0 changes the value.

There are also constraints caused by synchronization. If the graph with all constraints
has a cycle, the output is not legal. But if there are no cycles, the result is allowed.

In this example, the code can appear to the memory system as h1 >> k1 >> h0 >>
k0.

There is no cycle, so this is legal.

Even though h0 appears first (in sequenced-before order) before h1, there is no
requirement that the operations appear in text order (sequenced-before order) to the
memory system.

Example 2

In HSAIL, stores need not stay in order.

Work-item 0 Work-item 1

@h0: st_global_u32 1, [&a] @k0: ld_global_u32 $s0, [&b]

@h1: st_global_u32 1, [&b] @k1: ld_global_u32 $s1, [&a]

Initially, &a and &b = 0.

$s0 = 1 and $s1 = 0 is allowed.

Because no operations are marked with acquire or release, the stores and loads can
be reordered (in any order).

Any order where h1 >> k0 and k1 >> h0 has the allowed result.

This example shows that work-items cannot reliably synchronize by spinning on a
flag without using acquire and release.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Memory Operations 141

Example 3

HSAIL does not require write-read causality.

Work-item 0 Work-item 1 Work-item 2

@h0: st_global_u32 1, [&a] @k0: ld_global_u32 $s0, [&a] @j0: ld_global_u32 $s1, [&b]

@h1: @k1: st_global_u32 1, [&b] @j1: ld_global_u32 $s2, [&a]

Initially, &a and &b = 0.

$s0 = 1, $s1 = 1, and $s2 = 0 is allowed.

$s0 = 1 implies h0 >> k0, $s1 = 1 implies k1 >> j0, and $s2 = 0 implies j1 >> h0.

Thus, HSAIL requires only j1 >> h0 >> k0 and k1 >> j0.

Example 4

Register dependence does not force the order of memory operations.

Work-item 0 Work-item 1

@h0: ld_global_u32 $s0, [&a] @j0: st_global_u32 20, [100]

@h1: ld_global_u32 $s1, [$s0] @j1: st_global_rel_u32 100, [&a]

Initially, &a and location 100 = 0.

$s1 == 0 and $s0 == 100 is allowed.

If $s1 == 0 then h1 >> j0.

If $s0 == 100 then j1 >> h1.

Because of the st_rel, j0 >> j1. Thus, the order is j0 >> j1 >> h1 >> h0, which
does not have a cycle.

Because this seems to violate dependence order, it is useful to consider how this can
come about.

Work-item 0 is allowed to prefetch load h1. One reason it might do this is that code
before these operations reads address 96, and the implementation reads in large cache
lines.

Later, work-item 1 reads the new value of &a, which is 100. Then it reads the value of
location 100, but because there is no synchronization, it can use the previously
prefetched value of 0.

6.7.2 Examples Where Reusing an Address Forces Order

Example 5

Writes to the same address stay in order.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

142 Memory Operations  

Work-item 0

@h0: st_global_u32 1 [&a]

@h1: st_global_u32 2, [&a]

@l2: ld_global_u32 $s0, [&a]

Initially, &a = 0.

HSAIL does not allow $s0 = 1.

Example 6

Loads in a single work-item do not reorder across stores when their addresses are the
same.

Work-item 0

@h0: st_global_u32 1, [&a]

@l2: ld_global_u32 $s0, [&a]

Initially, &a = 0.

HSAIL does not allow $s0 = 0.

Example 7

This example shows where stores are transitively visible.

Work-item 0 Work-item 1 Work-item 2

@h0: st_global_rel_u32 1,
[&a]

@k0: ld_global_u32 $s0, [&a] @j0: ld_global_acq_u32 $s1,
[&b]

@h1: @k1: st_global_rel_u32 1,
[&b]

@j1: ld_global_u32 $s2, [&a]

Initially, &a and &b = 0 .

HSAIL does not allow $s0 = 1 and $s1 = 1 and $s2 = 0.

If $s0 = 1 then h0 >> k0.

If $s1 = 1 then k1 >> j0.

If $s2 = 0 then j1 >> h0.

Because of the synchronization, k0 >> k1 and j0 >> j1. Thus, the order is h0 >> k0
>> k1 >> j0 >> j1 >> h0, which has an illegal cycle.

6.7.3 Examples With One-Sided Synchronization

The examples in this section show that operations with synchronization on one
direction do not force an ordering on the other direction (but force some partial
ordering).

Example 8

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Memory Operations 143

HSAIL implementations are allowed to reorder memory operations, even when some
of the operations are marked as release.

Work-item 0 Work-item 1

@h0: st_global_rel_u32 1, [&a] @k0: st_global_rel_u32 1, [&b]

@h1: ld_global_u32 $s0, [&b] @k1: ld_global_u32 $s1, [&a]

Initially, &a and &b = 0.

$s0 = 0 and $s1 = 0 is allowed.

The code can appear to the memory system as h1 >> k1 >> h0 >> k0.

In HSAIL, release does not prevent operations from moving up, but it does prevent
operations from moving down.

In HSAIL, for two work-items to communicate, both the writer and the reader need
to use explicit synchronization.

Example 9

Stores cannot be moved before an ld_acq operation.

Work-item 0 Work-item 1

@h0: ld_global_acq_u32 $s0, [&a] @k0: ld_global_acq_u32 $s1, [&b]

@h1: st_global_u32 1, [&b] @k1: st_global_u32 1, [&a]

Initially, &a and &b = 0.

HSAIL does not allow $s0 = 1 and $s1 = 1.

If $s0 = 1, then k1 >> h0.

If $s1 = 1, then h1 >> k0.

But the ld_acq adds edges h0 >> h1 and k0 >> k1. Thus, the order must be h1 >> k0
>> k1 >> h0 >> h1, which has an illegal cycle.

6.7.4 Examples With Two-Sided Synchronization

In these examples, two-sided synchronization prevents reordering.

Example 10

HSAIL implementations are not allowed to reorder memory operations that are
marked with acquire/release.

Work-item 0 Work-item 1

@h0: st_global_u32 1, [&a] @k0: ld_global_acq_u32 $s0, [&b]

@h1: st_rel_u32 1, [&b] @k1: ld_global_u32 $s1, [&a]

Initially, &a and &b = 0.

HSAIL does not allow $s0 = 1 and $s1 = 0.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

144 Memory Operations  

Because of acquire/release, h0 >> h1 and k0 >> k1.

If $s0 = 1, then h1 >> k0.

But if $s1 = 0, then k1 >> h0. Thus, the order is kh0 >> h1 >> k0 >> k1 >> h0, which
is an illegal cycle and not allowed.

Example 11

In this example, two-sided synchronization prevents reordering.

Work-item 0 Work-item 1

@h0: st_global_rel_u32 1, [&a] @k0: st_global_rel_u32 1, [&b]

@h1: ld_global_acq_u32 $0, [&b] @k1: ld_global_acq_u32 $s1, [&a]

Initially, &a and &b = 0.

HSAIL does not allow $s0 = 0 and $s1 = 0.

Ordinary loads can move up before a st_rel but not an ld_acq.

If $s0 == 0, then h1 >> k0.

If $s1 == 0, then k1 >> h0.

Because of synchronization, k0 >> k1 and h0 >> h1. Thus, there is a cycle h1 >> k0
>> k1 >> h0 >> h1.

Example 12

In this example, stores are seen in consistent order.

Work-item 0 Work-item 1 Work-item 2 Work-item 3

@h0:
st_global_rel_u32 1,
[&a]

@k0:
st_global_rel_u32 1,
[&b]

@j0:
ld_global_acq_u32
$s0, [&a]

@m0:
ld_global_acq_u32
$s2, [&b]

@j1:
ld_global_acq_u32
$s1, [&b]

@m1:
ld_global_acq_u32
$s3, [&a]

Initially, &a and &b = 0.

HSAIL does not allow $s0 and $s1 = 0, $s2 = 1, and $s3 = 0.

If $s0 == 1, then h0 >> j0 .

If $s1 == 0, then j1 >> k0.

If $s2 = 1, then k0 >> m0.

If $s3 = 0, then m1 >> h0.

Because of synchronization, j0 >> j1 and m0 >> m1. Thus, the order is j0>> j1 >>
k0 >> m0 >> m1 >> h0 >> j0, which has an illegal cycle.

Example 13

In this example, synchronized atomics are seen in consistent order.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Memory Operations 145

Work-item 0 Work-item 1 Work-item 2 Work-item 3

@h0:
atomic_exch_global_ar_u32
$s4, [&a], 1

@k0:
atomic_exch_global_ar_u32
$s5, [&b], 1

@j0:
ld_global_acq_u32
$s0, [&a]

@m0:
ld_global_acq_u32
$s2, [&b]

@j1:
ld_global_acq_u32
$s1, [&b]

@m1:
ld_global_acq_u32
$s3, [&a]

Initially, &a and &b = 0.

HSAIL does not allow $s0 = $s1 = 0, $s2 = 1 and $s3 = 0.

This example has the same analysis as Example 12.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

146 Memory Operations  

Chapter 7

Image Operations
This chapter describes how image and sampler objects are used in HSAIL and also
describes the read image, load image, store image, and atomic image operations.

Note: For background information, see the OpenCL™ Specification: http://
www.khronos.org/registry/cl/specs/opencl-1.2.pdf.

7.1 Images in HSAIL

7.1.1 What Are Images?

Images are a graphics feature that can sometimes be useful in data-parallel computing.
Image memory is a special kind of memory access that can make use of dedicated
hardware often provided for graphics. Many implementations will provide such
dedicated hardware to speed up image operations.

Reasons to use an image include:

• Implementations can have special caches that are optimized for 2D accesses.

• Implementations can have dedicated hardware that can be used for specialized
operations. One such operation is filtering, which is a way to determine a value
for a coordinate from the values in the image that are near the coordinate.
Certain filtering modes (like linear) form averages around the coordinate.
Mathematically, this tends to smooth out the values or “filter” out high-frequency
changes.

• Implementations can have special out-of-bounds hardware support.

• Images can be addressed in one, two, or three dimensions using integer or
normalized coordinates. Coordinates can be either integers or floating-point
values in the 0.0 to 1.0 range.

• Image memory offers different addressing modes, as well as data filtering, for
some specific image formats.

• Images have many special compression modes that can save bandwidth.

While images are frequently used to hold visual data, an HSAIL program can use an
image to hold any kind of data.

In all HSAIL implementations, the use of images provides a collection of capabilities
that extend the simple CPU memory view.

A 1D image and a linear array differ because implementations are allowed to insert
gaps in images whenever that helps performance. Implementations are allowed to
reorder the memory locations of 2D and 3D images in any order.

Image implementations can create caching hints using read-only images.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Image Operations 147

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

Images can be used to optimize write operations by delaying them until the next kernel
execution.

7.1.2 How Images Are Described

An image is an array of one, two, or three dimensions.

Each element in an image has four values called components. The components are
named rgba.

Each element in the image has the same format.

Each image has a fixed size for each dimension.

Associated with each image are two objects:

• An image object that describes how the image is structured.

• A sampler object that describes how a particular read is to be performed.

HSAIL can create an image object, but it cannot fill in the image data. The application
creates the image and then binds it to the name of the image object by using a runtime
library call.

Conceptually, inside an image object is a reference to the image data.

Image objects in HSAIL are opaque: the only access to the image data referenced by
the image object is through HSAIL image operations, not through ld, st, atomic, or
atomicnoret operations.

Image objects can be passed as kernel and function arguments and can be copied
between memory and registers using ld, st, and mov operations. Note that these
operations are copying the image object that references the image data, not the image
data. The memory address of an image object can be taken using the lda operation,
but again this is the address of the image object, not the image data.

An image object can be defined as either of the following:

• Read-only (with type roimg)

• Read-write (with type rwimg)

Image data memory that is referenced by an roimg object is read-only within the
kernel dispatch that uses it. The image data can, however, still be written by the host
CPU. Within a different kernel dispatch, the same image data can be referenced by an
rwimg object, and within that kernel dispatch the image data is read-write. However,
it is undefined if, during the execution of a specific kernel dispatch, the image data
referenced by an roimg object within that kernel dispatch is written during the
execution of the kernel. This writing includes through aliased paths, both by regular
memory operations and by image operations using rwimg image objects, and by any
agent.

For more information, see 7.1.4 Image Objects (p. 150).

Just like image objects, sampler objects are opaque. They can be passed as kernel and
function arguments and can be copied between memory and registers using ld, st,
and mov operations. The memory address of a sampler object can be taken using the
lda operation. HSAIL provides operations to access properties of samplers.

Sampler objects have type samp.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

148 Image Operations  

For more information, see 7.1.7 Sampler Objects (p. 156).

7.1.3 Image Geometry

Each image has an associated geometry.

There are six kinds of image geometry:

• 1D (one-dimensional image)

• 2D (two-dimensional image)

• 3D (three-dimensional image)

• 1DA (one-dimensional image array)

• 2DA (two-dimensional image array)

• 1DB (one-dimensional image buffer)

1D
A 1D image contains data that can be addressed with a single coordinate: width. The
coordinate can be either of the following:

• An unnormalized integer value greater than or equal to 0 and less than the
width of the image

• A normalized floating-point value between 0 and 1

2D
A 2D image is addressed by two coordinates: width and height. The coordinates can
be one of the following:

• A pair of unnormalized integer values greater than or equal to 0 and less than
the width (height) of the image

• A pair of normalized floating-point values between 0 and 1

3D
A 3D image is addressed by three coordinates: width, height, and depth. The
coordinates can be one of the following:

• A triple of unnormalized integer values greater than or equal to 0 and less
than the height or depth of the image

• A triple of normalized floating-point values between 0 and 1

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Image Operations 149

1DA
A 1DA image is an array of a homogeneous collection of one-dimensional images,
all with the same size and format.

Each element in the 1DA is addressable with two coordinates:

• The first selects the coordinate within the image.

• The second indexes the underlying 1D image.

If the coordinates are floating-point, some rules apply to the second coordinate:

• The second coordinate must be unnormalized.

• The second coordinate is rounded to the nearest even integer.

• If the second coordinate is out of bounds, it is clamped so that the result is
greater than or equal to 0 and less than or equal to the array size −1.

The most important difference between 1DA images and 2D images is that samplers
never combine values across images.

2DA
A 2DA image is an array of two-dimensional images, addressed by three
coordinates:

• The first two are the coordinates of an element in the image.

• The third selects the image.

The images must all have the same size and format.

1DB
A 1DB image buffer is a specialized kind of one-dimensional image with the
following restrictions:

• The coordinates must be unnormalized, not normalized.

• Samplers cannot be used.

Note: Graphic systems frequently support many additional image formats,
cubemaps, three-dimensional arrays, and so forth. HSAIL has just enough graphics
to support common programming languages like OpenCL. The BRIG enumeration for
geometry includes additional geometry values that can be used by extensions. See
19.2.9 BrigImageGeometry (p. 255).

7.1.4 Image Objects

An image object describes how an image is structured. It contains pieces of
information that hold the properties of an image:

• Width in elements.

• Height in elements. Must be 1 if the image is 1D or 1DA.

• Depth in elements. Must be 1 if the image is 1D, 2D, 1DA, or 2DA.

• Array size. Must be 1 if the image is not a 1DA or a 2DA.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

150 Image Operations  

• Image format: Specifies how the data is stored in memory. See Table 7–1 (p.
152).

• Image order: Specifies the presence and order of components in memory. See
Table 7–2 (p. 152).

An image object also contains a reference to the actual image data.

Image objects can be defined in three places:

• As a global or readonly variable outside of a function or kernel. They are not
allowed inside a function or kernel, because image objects require external
linkage so the agent can initialize the image data.

• As a type in an arg definition

• As a type in a kernarg definition

An image object always has a size of 8 bytes and a natural alignment of 8 bytes.

The format of an image object is device-specific.

The HSA runtime provides operations for an application program to create image
objects including creating and associating image data with an image object for a
specific HSA component. The runtime ensures that the correct device-specific image
object format is used when it is:

• Passed as the argument to a kernel dispatch

• A global or readonly segment variable referenced in an address expression

It is undefined to use an image object in any HSA component other than the HSA
component that originally accessed it from a kernel argument or global or readonly
segment variable. This is because different HSA components might have different
representations for an image object.

An image object declared as a global or readonly variable can have its properties
defined by providing an initializer that is a list containing pairs of keyword = values.

For example, the following defines 12 read-only objects and 14 read-write objects:
global_roimg &name0 = {width = 5, height = 4, depth = 6,
 format = unorm_short_101010, order = rgbx};
extern global_roimg &name1;
extern global_roimg &ArrayOfroimgs[10];
extern global_rwimg &namedrwimg12;
extern global_rwimg &namedrwimg2;
extern global_rwimg &namedrwimg3;
extern global_rwimg &ArrayOfrwimgs[10];
global_rwimg &namedrwimgWithInit = {width = 5, height = 4, depth = 6,
 format = unorm_short_101010, order = rgbx};

Each of the properties is called a TOKEN_PROPERTY in Extended Backus-Naur Form.

The query operations can be used to query the attributes of an image. See 7.7 Query
Image and Query Sampler Operations (p. 169).

See the tables below. For information about how to read the tables, see 7.1.5 How
Images Are Accessed (p. 153) and 7.1.6 Bits Per Pixel (bpp) (p. 154).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Image Operations 151

Table 7–1 Enumeration for Image Format Properties

Enumeration Name No. of Components Normalized? Signed? Bits Type

snorm_int8 four yes yes 8 integer

snorm_int16 four yes yes 16 integer

unorm_int8 four yes no 8 integer

unorm_int16 four yes no 16 integer

unorm_int24 one yes no r=bits[24:00] integer

unorm_short_565 three yes no r=bits[15:11] integer

g=bits[10:05]

b=bits[04:00]

unorm_short_555 three yes no r=bits[14:10] integer

g=bits[09:05]

b=bits[04:00]

bit 15 ignored

unorm_int_101010 three yes no 31:30 ignored integer

r=bits[29:20]

g=bits[19:10]

b=bits[09:00]

signed_int8 four no yes 8 integer

signed_int16 four no yes 16 integer

signed_int32 four no yes 32 integer

unsigned_int8 four no no 8 integer

unsigned_int16 four no no 16 integer

unsigned_int32 four no no 32 integer

half_float four - - 16 floating-point

float four - - 32 floating-point

Table 7–2 Enumeration for Image Order Properties

Enumeration Name Components Border Components' Image Format

r (r,0f,0f,1f) 0f,0f,0f,1f

rx (r,0f,0f,1f) 0f,0f,0f,0f

a (pf,0f,0f,a) 0f,0f,0f,a

rg (r,g,0f,1f) 0f,0f,0f,1f

rgx (r,g,0f,1f) 0f,0f,0f,0f

ra (r,0f,0f,a) 0f,0f,0f,0f

rgb (r,g,b,1f) 0f,0f,0f,1f unorm_short_565

unorm_short_555

unorm_int_101010

srgb, srgbx (r,g,b,1f) 0f,0f,0f,0f unorm_int8

rgbx (r,g,b,1f) 0f,0f,0f,0f

rgba (r,g,b,a) 0f,0f,0f,0f

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

152 Image Operations  

Enumeration Name Components Border Components' Image Format

bgra (b,g,r,a) 0f,0f,0f,0f unorm_int8

snorm_int8

signed_int8

unsigned_int8

argb (r,g,b,a) 0f,0f,0f,0f unorm_int8

snorm_int8

signed_int8

unsigned_int8

srgba (r,g,b,a) 0f,0f,0f,0f unorm_int8

sbgra (b,g,r,a) 0f,0f,0f,0f unorm_int8

intensity (i,i,i,i) 0f,0f,0f,0f unorm_int8

unorm_int16

snorm_int8

snorm_int16

half_float

float

luminance (1,1,1,1f) 0f,0f,0f,1f unorm_int8

unorm_int16

snorm_int8

snorm_int16

half_float

float

7.1.5 How Images Are Accessed

To access the data in an image, a program loads an image object into a d register using
a load (ld) operation with a source type of roimg or rwimg. This does not load the image
data; instead, it loads an opaque handle that can be used to access the image data. It
then uses this register as the source of the read image (rdimage, load image (ldimage),
store image (stimage), and atomic image (atomicimage and atomicimagenoret)
operations.

The differences between the rdimage operation and the ldimage operation are:

• rdimage takes a sampler object and therefore supports additional modes.

• The value returned for out-of-bounds references for rdimage depends on the
sampler object; ldimage always returns 0.

The sampler object is provided to the image operations in the same way as the image
object: it is loaded into a d register.

Both an image and sampler object in a d register can be moved to another d register
using the move (mov) operation, and stored to another variable of the same type using
the store (st) operation. This allows them to be passed by value into a function, and
returned by value from a function.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Image Operations 153

It is undefined if the d register used in an image operation was not loaded with a value
that ultimately originated from a global, readonly, or kernal argument variable. For
images, the type of image in the original variable (roimg or rwimg) must match in all
operations that use the value. For samplers, the original variable and all operations
that use the value must specify the sampler type (samp). These operations include load
(ld), store (st), move (mov), the image operations (rdimage, ldimage, stimage,
atomicimage, and atomicimagenoret), and the image and sampler query operations
(see 7.7 Query Image and Query Sampler Operations (p. 169)).

The address of an image or sampler object can be taken using the lda operation. This
allows them to be passed by reference. It is undefined if the address returned is used
by a load or store operation that does not specify the same type as the original image
or sampler object.

Each image has an image format that indicates how the data is stored in memory. For
example, unorm_short_555 specifies that data is stored as three 5-bit fields in a 16-bit
(2-byte) field of memory. See Table 7–1 (p. 152).

Each image has an image order, which describes the memory layout. See Table 7–2
(p. 152).

Reads from an image retrieve four values (rgba). Stores to an image expect four values.
However, to save space, the data in memory are allowed to have fewer than four
components and are allowed to have the components in a different order.

For example, the image order r specifies that only the r component is stored in
memory. On a read, the gba components get default values. On a store, only the first
component is written into memory.

To access data from an image, the operations require coordinates. Coordinates can be:

• Float-normalized (meaning in the range 0.0 to 1.0 as mapped to the image size)

• Float-unnormalized (0 to the size of the coordinate dimension)

• Integer (0 to the size of the coordinate dimension)

When a rdimage operation accesses an image using normalized float coordinates, it is
possible that the value used in the operation does not exactly map to a coordinate value
of the image. In this case, the resulting unnormalized coordinate accessed will be near
the location of the normalized value. A sampler specifies how the coordinate is chosen.
(An example is the use of a weighted average of the values around the coordinate.)

Normalized coordinates are not restricted to the 0 to 1.0 range. For values outside of
this range, assorted transformations, again determined by the sampler, can be applied.
(For example, the coordinates could be clamped to the edge, or the coordinates could
be wrapped.) The rdimage operation results in four values, computed from the image
based on the sampler.

7.1.6 Bits Per Pixel (bpp)

Associated with each combination of image format and image order there is a number
called the bits per pixel (bpp).

The bpp value is the number of bits needed to hold one element of an image. The bpp
value is the size of a component (from the format) times the number of components
(from the order of components).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

154 Image Operations  

For example, the image order r has one component per element if the element is in
half_float image format (16-bit). The bpp value is 1*16 = 16 bits. If the image format is
float (32-bit), then the bpp is 1*32 = 32 bits.

The image order bgra has four components per element. If the image format is
unorm_int8, then the bpp is 4*8 = 32 bits.

The image order ra has two components per element. If the image format is float,
then the bpp is 2*32 = 64 bits.

Table 7–3 Supported Image Orders and Image Formats

unorm snorm uint sint float bpp

intensity, luminance

8 Y Y Y Y - 8

16 Y Y Y Y Y 16

32 - - - - Y 32

r

8 Y Y Y Y - 8

16 Y Y Y Y Y 16

24 Y - - - - 24

32 - - Y Y Y 32

rx, a

8 Y Y Y Y - 8

16 Y Y Y Y Y 16

32 - - Y Y Y 32

rg, rgx, ra

16_16 Y Y Y Y Y 32

32_32 - - Y Y Y 64

rgb, rgbx

5_6_5 Y - - - - 16

5_5_5 Y - - - - 16

rgba, bgra, argb

8_8_8 Y Y Y Y - 32

16_16_16_16 Y Y Y Y Y 64

32_32_32 - - Y Y Y 96

32_32_32_32 - - Y Y Y 128

srgb, srgbx, srgba, sbgra

8_8_8_8 Y - - - - 32

In the table:

• Y means supported.

• - means not supported.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Image Operations 155

7.1.7 Sampler Objects

Sampler objects are used to specify how to process reads (rdimage operations) for
images.

Sampler objects can be defined in three places:

• As a global or readonly variable outside of a function or kernel. They are not
allowed inside a function or kernel, because sampler objects require external
linkage so the agent can initialize them.

• As a type in an arg definition

• As a type in a kernarg definition

Properties of a sampler object are:

• coord: normalized (coordinates are in range [0.0 to 1.0]) or unnormalized
(coordinates are integers).

• filter: nearest or linear. Linear filtering cannot be used with read-write
images.

• boundaryU: boundary mode for first component: wrap, clamp, mirror,
mirroronce, or border.

• boundaryV: boundary mode for second component: wrap, clamp, mirror,
mirroronce, or border.

• boundaryW: boundary mode for third component: wrap, clamp, mirror,
mirroronce, or border.

mirror makes the image look as though it was infinitely big; no coordinate returns the
border color.

mirroronce makes the image look twice as big, where the additional half of the new
image mirrors the original.

Coordinates outside of the doubled image return the border color.

See 7.1.8 Rules to Process Coordinates (p. 157) and 7.1.9 Image Boundary Modes (p.
157).

A sampler object always has a size of 8 bytes and a natural alignment of 8 bytes.

The format of a sampler object is device-specific.

The HSA runtime provides operations for an application program to create sampler
objects to pass as arguments to kernels for a specific HSA component. The runtime
ensures that the correct device-specific sampler object format is used when it is:

• Passed as the argument to a kernel dispatch

• A global or readonly segment variable referenced in an address expression

It is undefined to use a sampler object in any HSA component other than the HSA
component that originally accessed it from a kernel argument or global or readonly
segment variable. This is because different HSA components might have different
representations for a sampler object.

A sampler object declared as a global or readonly variable can have its properties
defined by providing an initializer that is a list containing pairs of keyword = values.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

156 Image Operations  

An example of a sampler object is:
global_samp &y1 = {coord = normalized, filter = nearest, boundaryU = clamp,
 boundaryV = clamp, boundaryW = clamp};

Implementations of HSAIL are expected to provide efficient ways to organize images
to take advantage of 2D spatial locality. Because the three-coordinate address is
available, implementations can reorder or pad the image data in arbitrary ways.

7.1.8 Rules to Process Coordinates

If the value of u, v, or w is INF or NaN, the result is undefined.

coord = normalized specifies that all coordinates are in the range [0.0 to 1.0].

coord = unnormalized specifies that all cordinates are in the range 0 to dimension -1

filter = nearest specifies that the image element selected is the nearest (in
Manhattan distance) to the specified (u, v, w) coordinates.

filter = linear selects a line block of two elements (for 1D images), a 2x2 square
block of elements (for 2D images), or a 2x2x2 cube block of elements (for 3D images)
around the input coordinate, and combines the selected values using linear
interpolation. The result is formed as the weighted average of the values in each
element in the block. The weights are the fractional distance from the element center
to the coordinate.

Certain boundary modes are connected with formats and normalized coordinates:

• The array indexes (1DA and 2DA) are always treated as clamped.

• wrap, mirror, and mirroronce require normalized coordinates.

7.1.9 Image Boundary Modes

boundaryU, boundaryV, and boundaryW determine what happens when the coordinate
(u, v, w) is out of range. Once the coordinate has been converted to an unnormalized
value, it is possible that the coordinate value is outside of the image. In that case, either
the coordinate gets mapped back into range by the boundary mode for each
component, or a special value called the border color is used.

Each component of the coordinate is processed separately. If the coordinate x is
outside of the image (that is, either x < 0 or x > dim-1, where dim is the image
dimension for this component), then the coordinate is transformed.

The code below shows how the boundary mode affects the transformation. It follows
these steps:

1. The coordinate is converted to an integer if the coordinate is normalized and
nearest filtering is used: x = floor (u * dim).

2. If the coordinate is normalized and linear filtering is used: x = floor (u* dim
- 0.5).

3. If the coordinate is not normalized and nearest filtering is used: x = floor(u).

4. If the coordinate is not normalized and linear filtering is used: x = floor(u -
0.5).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Image Operations 157

if ((x < 0) || (x > dim - 1)) {
 switch (boundarymode)
 {
 case wrap:
 x = x mod dim;

 if (x < 0) { x += dim; }

 break;
 case mirror:
 {
 if(x < 0){x = -x - 1;}
 bool flip = (x/dim) & 1;
 x &= dim;
 if (flip) {x = dim - x - 1;}
 break;
 }
 case clamp:
 x = max(0, min(x, dim - 1));
 break;
 case mirroronce:
 if (x < 0) {x = -x - 1;}
 x = max(0, min(x, dim - 1));
 break;
 case border:
 // special case: instead of fetching from the image,
 // use the border color
 break;
 }

If boundary mode in the sampler is clamp, then out-of-range image coordinates return
the border color. The border color selected depends on the image channel order. See
the following table:

Table 7–4 Image Channel Order and Border Color

Image Channel Order Border Color

A, INTENSITY, Rx, RA, RGx, RGBx, ARGB, BGRA, RGBA, sRGB, sRGBx, sRGBA, or sBGRA (0.0f, 0.0f, 0.0f, 0.0f)

R, RG, RGB, or LUMINANCE (0.0f, 0.0f, 0.0f, 1.0f)

If the image order has less than four components, rdimage and ldimage first figure
out the return values, ignoring the missing components, and then return a four-
element result, filling in the missing values from the Components column in Table 7–
2 (p. 152).

7.1.10 Image Formats and Output Types

HSAIL requires that implementations support the image formats in the table below
for each output type.

Table 7–5 Image Formats and Output Types

Image Format f32 Output Type u32 Output Type s32 Output Type

snorm_int8 [−1.0 to 1.0] * *

snorm_int16 [−1.0 to 1.0] * *

unorm_int8 [0.0 to 1.0] * *

unorm_int16 [0.0 to 1.0] * *

unorm_int24 [0.0 to 1.0] * *

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

158 Image Operations  

Image Format f32 Output Type u32 Output Type s32 Output Type

unorm_short_565 [0.0 to 1.0] * *

unorm_short_555 [0.0 to 1.0] * *

unorm_short_101010 [0.0 to 1.0] * *

signed_int8 * u32 *

signed_int16 * u32 *

signed_int32 * u32 *

unsigned_int8 * * u32

unsigned_int16 * * u32

unsigned_int32 * * u32

half_float float * *

float float * *

In the table, * means “undefined.”

7.2 Read Image (rdimage) Operation
The read image (rdimage) operation performs an image memory lookup using an
image coordinate vector.

7.2.1 Syntax

Table 7–6 Syntax for Read Image Operation

Opcode and Modifiers Operands

rdimage_v4_1d_destType_imageType_coordType (destR, destG, destB, destA), image,
sampler, coordWidth

rdimage_v4_2d_destType_imageType_coordType (destR, destG, destB, destA), image,
sampler, (coordWidth, coordHeight)

rdimage_v4_3d_destType_imageType_coordType (destR, destG, destB, destA), image,
sampler, (coordWidth, coordHeight,
coordDepth)

rdimage_v4_1da_destType_imageType_coordType (destR, destG, destB, destA), image,
sampler, (coordWidth, coordArrayIndex)

rdimage_v4_2da_destType_imageType_coordType (destR, destG, destB, destA), image,
sampler, (coordWidth, coordHeight,
coordArrayIndex)

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Image Operations 159

Explanation of Modifiers

v4: Specifies the number of elements returned by the operation. Always 4.

1d, 2d, 3d, 1da, 2da: Image geometry. Specifies the number and meaning of coordinates required to access
an image element. Can be 1d (width), 2d (width and height), 3d (width, height, and depth), 1da (height and
array index), or 2da (width, height and array index). 1db is not supported. See 7.1.3 Image Geometry (p.
149).

destType: Destination type: u32, s32, or f32. See Table 4–2 (p. 46).

imageType: Image object type: roimg, rwimg. See Table 4–4 (p. 47).

coordType: Source coordinate element type: u32, f32. See Table 4–2 (p. 46).

Explanation of Operands

destR, destG, destB, destA: Destination. Must be an s register.

image: A source operand d register that contains a value of an image object of type imageType. It is
undefined if the value was not originally loaded from a global, readonly, or kernarg segment variable of
type imageType, or from an arg segment variable that is of type imageType that was initialized with a value
that is of type imageType.

sampler: A source operand d register that contains a value of a sampler object. It is always of type samp.
It is undefined if the value was not originally loaded from a global, readonly, or kernarg segment variable
of type samp, or from an arg segment variable that is of type samp that was initialized with a value that is
of type samp.

coordWidth, coordHeight, coordDepth, coordArrayIndex: A source s register of type coordType that
specifies the coordinates being read.

Exceptions (see Chapter 13 Exceptions (p. 219))

Invalid address exceptions are allowed. May generate a memory exception if image data is unaligned.

For BRIG syntax, see 19.10.3 BRIG Syntax for Image Operations (p. 309).

7.2.2 Description

The read image (rdimage) operation performs an image memory lookup using an
image coordinate vector. The operation loads data from a read-write or read-only
image, specified by source operand image at coordinates given by source operands
coordWidth, coordHeight, coordDepth, and coordArrayIndex, into destination
operands destR, destG, destB, and destA. A sampler specified by source operand
sampler defines how to process the read.

rdimage used with integer coordinates has restrictions on the sampler:

• coord must be unnormalized.

• filter must be nearest.

• The boundary mode must be clamp or border.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

160 Image Operations  

rdimage used with read-write images has restrictions on the sampler:

• filter must be nearest.

Examples

ld_global_rwimg $d1, [%rwimg1];
ld_kernarg_roimg $d2, [%roimg2];
ld_readonly_samp $d3, [%samp1];
rdimage_v4_1d_s32_rwimg_f32 ($s0, $s1, $s5, $s3), $d1, $d3, $s6;
rdimage_v4_1da_s32_rwimg_f32 ($s0, $s1, $s2, $s3), $d1, $d3,
 ($s6, $s7);
rdimage_v4_2da_s32_rwimg_f32 ($s0, $s1, $s3, $s4), $d1, $d3,
 ($s6, $s9, $s12);
rdimage_v4_2d_s32_roimg_f32 ($s0, $s1, $s3, $s4), $d2, $d3,
 ($s6, $s9);
rdimage_v4_3d_s32_roimg_f32 ($s0, $s1, $s3, $s4), $d2, $d3,
 ($s6, $s9, $s2);

7.3 Load Image (ldimage) Operation
The load image (ldimage) operation loads from image memory using an image
coordinate vector.

7.3.1 Syntax

Table 7–7 Syntax for Load Image Operation

Opcode and Modifiers Operands

ldimage_v4_1d_destType_imageType_coordType (destR, destG, destB, destA), image,
coordWidth

ldimage_v4_2d_destType_imageType_coordType (destR, destG, destB, destA), image,
(coordWidth, coordHeight)

ldimage_v4_3d_destType_imageType_coordType (destR, destG, destB, destA), image,
(coordWidth, coordHeight, coordDepth)

ldimage_v4_1da_destType_imageType_coordType (destR, destG, destB, destA), image,
(coordWidth, coordArrayIndex)

ldimage_v4_2da_destType_imageType_coordType (destR, destG, destB, destA), image,
(coordWidth, coordHeight, coordArrayIndex)

ldimage_v4_1db_destType_imageType_coordType (destR, destG, destB, destA), image,
coordByteIndex

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Image Operations 161

Explanation of Modifiers

v4: Specifies the number of elements returned by the operation. Always 4.

1d, 2d, 3d, 1da, 2da, 1db: Image geometry. Specifies the number and meaning of coordinates required to
access an image element. Can be 1d (width), 2d (width and height), 3d (width, height, and depth), 1da (height
and array index), 2da (width, height and array index), or 1db (byte index). See 7.1.3 Image Geometry (p.
149).

destType: Destination type: u32, s32, or f32. See Table 4–2 (p. 46).

imageType: Image object type: roimg, rwimg. See Table 4–4 (p. 47).

coordType: Source coordinate element type: u32. See Table 4–2 (p. 46).

Explanation of Operands

destR, destG, destB, destA: Destination. Must be an s register.

image: A source operand d register that contains a value of an image object of type imageType. It is
undefined if the value was not originally loaded from a global, readonly, or kernarg segment variable of
type imageType, or from an arg segment variable that is of type imageType that was initialized with a value
that is of type imageType.

coordWidth, coordHeight, coordDepth, coordArrayIndex: A source s register of type coordType that
specifies the coordinates being read.

Exceptions (see Chapter 13 Exceptions (p. 219))

Invalid address exceptions are allowed. May generate a memory exception if image data is unaligned.

For BRIG syntax, see 19.10.3 BRIG Syntax for Image Operations (p. 309).

7.3.2 Description

The load image (ldimage) operation loads from image memory using an image
coordinate vector. The operation loads data from a read-write or read-only image,
specified by source operand image at integer coordinates given by source operands
coordWidth, coordHeight, coordDepth, and coordArrayIndex, into destination
operands destR, destG, destB, and destA.

While ldimage does not have a sampler, it works as though there is a sampler with
coord = unnormalized and filter = nearest.

If a coordinate is out of bounds (that is, greater than the dimension of the image or less
than 0), no load is performed and 0 is returned.

The differences between the ldimage operation and the rdimage operation are:

• rdimage takes a sampler and therefore supports additional modes.

• The value returned if a coordinate is out of bounds (that is, greater than the
dimension of the image or less than 0) for rdimage depends on the sampler;
ldimage always returns 0.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

162 Image Operations  

For the 1db geometry, coordinates are in bytes. For all other geometries, coordinates
are in elements.

Examples

ld_global_rwimg $d1, [%rwimg1];
ld_kernarg_roimg $d2, [%roimg2];
ldimage_v4_3d_f32_rwimg_u32 ($s1, $s2, $s3, $s4), $d1,
 ($s4, $s5, $s6);
ldimage_v4_1da_f32_rwimg_u32 ($s1, $s2, $s3, $s4), $d1,
 ($s4, $s5);
ldimage_v4_1db_f32_roimg_u32 ($s1, $s2, $s3, $s4), $d2, $s4;
ldimage_v4_2da_f32_roimg_u32 ($s1, $s2, $s3, $s4), $d2,
 ($s4, $s1, $s2);

7.4 Store Image (stimage) Operation
The store image (stimage) operation stores to image memory using an image
coordinate vector.

7.4.1 Syntax

Table 7–8 Syntax for Store Image Operation

Opcode and Modifiers Operands

stimage_v4_1d_srcType_imageType_coordType (srcR, srcG, srcB, srcA), image, coordWidth

stimage_v4_2d_srcType_imageType_coordType (srcR, srcG, srcB, srcA), image,
(coordWidth, coordHeight)

stimage_v4_3d_srcType_imageType_coordType (srcR, srcG, srcB, srcA), image,
(coordWidth, coordHeight, coordDepth)

stimage_v4_1da_srcType_imageType_coordType (srcR, srcG, srcB, srcA), image,
(coordWidth, coordArrayIndex)

stimage_v4_2da_srcType_imageType_coordType (srcR, srcG, srcB, srcA), image,
(coordWidth, coordHeight, coordArrayIndex)

stimage_v4_1db_destType_imageType_coordType (destR, destG, destB, destA), image,
coordByteIndex

Explanation of Modifiers

v4: Specifies the number of elements returned by the operation. Always 4.

1d, 2d, 3d, 1da, 2da, 1db: Image geometry. Specifies the number and meaning of coordinates required to
access an image element. Can be 1d (width), 2d (width and height), 3d (width, height, and depth), 1da (height
and array index), 2da (width, height and array index), or 1db (byte index). See 7.1.3 Image Geometry (p.
149).

srcType: Source type: u32, s32, or f32. See Table 4–2 (p. 46).

imageType: Image object type: rwimg. See Table 4–4 (p. 47).

coordType: Source coordinate element type: u32. See Table 4–2 (p. 46).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Image Operations 163

Explanation of Operands

srcR, srcG, srcB, srcA: Source data. Must be an s register.

image: A source operand d register that contains a value of an image object of type imageType. It is
undefined if the value was not originally loaded from a global, readonly, or kernarg segment variable of
type imageType, or from an arg segment variable that is of type imageType that was initialized with a value
that is of type imageType.

coordWidth, coordHeight, coordDepth, coordArrayIndex: A source s register of type coordType that
specifies the coordinates being read.

Exceptions (see Chapter 13 Exceptions (p. 219))

Invalid address exceptions are allowed. May generate a memory exception if image data is unaligned.

For BRIG syntax, see 19.10.3 BRIG Syntax for Image Operations (p. 309).

7.4.2 Description

The store image (stimage) operation stores to image memory using an image
coordinate vector. The operation stores data specified by source operands srcR,
srcG, srcB, and srcA to a read-write image specified by source operand image at
integer coordinates given by source operands coordWidth, coordHeight,
coordDepth, coordArrayIndex, and coordByteIndex.

If a coordinate is out of bounds (that is, greater than the dimension of the image or less
than 0), no store is performed.

The source elements are interpreted left-to-right as r, g, b, and a components of the
image format. These elements are written to the corresponding components of the
image element. Source elements that do not occur in the image element are ignored.

For example, an image format of r has only one component in each element, so only
source operand srcR is stored.

For the 1db geometry, coordinates are in bytes. For all other geometries, coordinates
are in elements.

Type conversions are performed as needed between the source data type specified
by srcType (s32, u32, or f32) and the destination image data element type and format.

Examples

ld_global_rwimg $d1, [%rwimg1];
stimage_v4_3d_f32_rwimg_u32 ($s1, $s2, $s3, $s4), $d1,
 ($s4, $s5, $s6);
stimage_v4_2da_f32_rwimg_u32 ($s1, $s2, $s3, $s4), $d1,
 ($s4, $s5, $s6);
stimage_v4_1da_f32_rwimg_u32 ($s1, $s2, $s3, $s4), $d1,
 ($s4, $s5);
stimage_v4_1db_f32_rwimg_u32 ($s1, $s2, $s3, $s4), $d1, $s4;

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

164 Image Operations  

7.5 Atomic Image (atomicimage) Operations
The atomic image (atomicimage) operations perform an atomic operation on image
memory using an image coordinate vector. They do both a read and a write to the
same coordinates which is done atomically.

7.5.1 Syntax

Table 7–9 Syntax for Atomic Image Operations

Opcode and Modifiers Operands

atomicimage_and_geom_destType_imageType_coordType dest, image, coord, src0

atomicimage_or_geom_destType_imageType_coordType dest, image, coord, src0

atomicimage_xor_geom_destType_imageType_coordType dest, image, coord, src0

atomicimage_exch_geom_destType_imageType_coordType dest, image, coord, src0

atomicimage_add_geom_destType_imageType_coordType dest, image, coord, src0

atomicimage_sub_geom_destType_imageType_coordType dest, image, coord, src0

atomicimage_inc_geom_destType_imageType_coordType dest, image, coord, src0

atomicimage_dec_geom_destType_imageType_coordType dest, image, coord, src0

atomicimage_min_geom_destType_imageType_coordType dest, image, coord, src0

atomicimage_max_geom_destType_imageType_coordType dest, image, coord, src0

atomicimage_cas_geom_destType_imageType_coordType dest, image, coord, src0, src1

Explanation of Modifiers

geom: Image geometry: 1d, 2d, 3d, 1da, 2da, 1db. Specifies the number and meaning of coordinates required
to access an image element. Can be 1d (width), 2d (width and height), 3d (width, height, and depth), 1da
(height and array index), 2da (width, height and array index), or 1db (byte index). See 7.1.3 Image Geometry
(p. 149).

destType:Type of formatted image data element: u32, s32, b32, u64, s64, b64, depending on the type of
operation. Length of 64 is not allowed for small machine model (see 2.10 Small and Large Machine Models
(p. 20).

add, sub, min, and max apply to u32, s32, u64, and s64 types.

inc and dec apply to u32 and u64 types.

and, or, xor, exch, and cas apply to b32 and b64 types.

See Table 4–2 (p. 46).

imageType: Image object type: roimg, rwimg. See Table 4–4 (p. 47).

coordType: Source coordinate element type: u32. See Table 4–2 (p. 46).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Image Operations 165

Explanation of Operands

dest: Destination, the original value of the formatted image data element being updated. Must be an s
register for 32-bit types and a d register for 64-bit types.

image: A source operand d register that contains a value of an image object of type imageType. It is
undefined if the value was not originally loaded from a global, readonly, or kernarg segment variable of
type imageType, or from an arg segment variable that is of type imageType that was initialized with a value
that is of type imageType.

coord: Source that specifies the coordinates being atomically updated, as either a single operand or a
vector operand of two or three elements. Each coordinate element must be an s register of type
coordType. The number of coordinate elements is specified by the geom modifier: single operand for 1D
images, a two-element vector operand for 2D images, and a three-element vector operand for 3D images.
The meaning of each coordinate element is the same as for the stimage operation.

src0: The formatted value of type destType used to combine with the formatted image data element
specified by coord. Can be a register, immediate value, or WAVESIZE.

src1: Used only for atomicimage_cas (compare and swap). If the contents of the image are equal to src0,
then the contents of the location are replaced with src1. Their type is destType. Can be a register,
immediate value, or WAVESIZE.

Exceptions (see Chapter 13 Exceptions (p. 219))

Invalid address exceptions are allowed. May generate a memory exception if image data is unaligned.

For BRIG syntax, see 19.10.3 BRIG Syntax for Image Operations (p. 309).

7.5.2 Description

The atomicimage operations perform an atomic operation on 32-bpp or 64-bpp (bits
per pixel) formatted image data element. The destType is used to determine the bits
per pixel size of the formatted image data element. It must match the image format.

All coordinates of atomic image operations must be integer values.

If a coordinate is out of bounds (that is, greater than the dimension of the image or less
than 0), then an atomic image operation has no effect and returns 0.

All images used in atomic image operations must be read-write (type rwimg).

For atomic image operations that operate on 32-bit types, the bits per pixel (bpp) of the
image must be 32. For 64-bit types, the bits per pixel must be 64.

The atomic operation performed is the same as for the regular atomic (atomic)
operations described in 6.5 Atomic (atomic) Operations (p. 134), except the operation
is performed on the formatted image data element specified by the coordinates.

The atomic image operations are the same as the atomic no return image
(atomicimagenoret) operations (see 7.6 Atomic Image No Return (atomicimagenoret)
Operations (p. 167)) except they return the contents of the memory location before the
operation.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

166 Image Operations  

Examples

ld_global_rwimg $d1, [%rwimg1];
ld_global_rwimg $d2, [%rwimg2];
atomicimage_and_3d_b32_rwimg_u32 $s1, $d1, ($s0, $s3, $s1), $s1;
atomicimage_and_2d_b32_rwimg_u32 $s2, $d1, ($s0, $s3), $s2;
atomicimage_and_1d_b32_rwimg_u32 $s3, $d1, $s1, $s10;
atomicimage_or_1d_b32_rwimg_u32 $s3, $d1, $s1, $s3;
atomicimage_xor_1db_b32_rwimg_u32 $s0, $d1, ($s1, $s2), $s3;
atomicimage_add_3d_s32_rwimg_u32 $s4, $d1, ($s0, $s3, $s1), $s2;
atomicimage_sub_2d_s64_rwimg_u32 $d3, $d2, ($s0, $s3), $d4;
atomicimage_min_1d_u64_rwimg_u32 $d3, $d2, $s1, $d4;
atomicimage_max_1da_u64_rwimg_u32 $d3, $d2, ($s1, $s2), $d4;
atomicimage_exch_2da_b64_rwimg_u32 $d3, $d2, ($s1, $s2, $s3), $d4;
atomicimage_cas_1d_b32_rwimg_u32 $s10, $d1, $s1, $s3, $s4;

7.6 Atomic Image No Return (atomicimagenoret)
Operations

The atomicimagenoret operations perform an atomic operation on 32-bpp or 64-bpp
(bits per pixel) data.

7.6.1 Syntax

Table 7–10 Syntax for Atomic Image No Return Operations

Opcode and Modifiers Operands

atomicimagenoret_and_geom_destType_imageType_coordType image, coord, src0

atomicimagenoret_or_geom_destType_imageType_coordType image, coord, src0

atomicimagenoret_xor_geom_destType_imageType_coordType image, coord, src0

atomicimagenoret_add_geom_destType_imageType_coordType image, coord, src0

atomicimagenoret_sub_geom_destType_imageType_coordType image, coord, src0

atomicimagenoret_inc_geom_destType_imageType_coordType image, coord, src0

atomicimagenoret_dec_geom_destType_imageType_coordType image, coord, src0

atomicimagenoret_min_geom_destType_imageType_coordType image, coord, src0

atomicimagenoret_max_geom_destType_imageType_coordType image, coord, src0

atomicimagenoret_cas_geom_destType_imageType_coordType image, coord, src0, src1

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Image Operations 167

Explanation of Modifiers

geom: Image geometry: 1d, 2d, 3d, 1da, 2da, 1db. Specifies the number and meaning of coordinates required
to access an image element. Can be 1d (width), 2d (width and height), 3d (width, height, and depth), 1da
(height and array index), 2da (width, height and array index), or 1db (byte index). See 7.1.3 Image Geometry
(p. 149).

destType:Type of formatted image data element: u32, s32, b32, u64, s64, b64, depending on the type of
operation. Length of 64 is not allowed for small machine model (see 2.10 Small and Large Machine Models
(p. 20).

add, sub, min, and max apply to u32, s32, u64, and s64 types.

inc and dec apply to u32 and u64 types.

and, or, xor, exch, and cas apply to b32 and b64 types.

See Table 4–2 (p. 46).

imageType: Image object type: roimg, rwimg. See Table 4–4 (p. 47).

coordType: Source coordinate element type: u32. See Table 4–2 (p. 46).

Explanation of Operands

image: A source operand d register that contains a value of an image object of type imageType. It is
undefined if the value was not originally loaded from a global, readonly, or kernarg segment variable of
type imageType, or from an arg segment variable that is of type imageType that was initialized with a value
that is of type imageType.

coord: Source that specifies the coordinates being atomically updated, as either a single operand or a
vector operand of two or three elements. Each coordinate element must be an s register of type
coordType. The number of coordinate elements is specified by the geom modifier: single operand for 1D
images, a two-element vector operand for 2D images, and a three-element vector operand for 3D images.
The meaning of each coordinate element is the same as for the stimage operation.

src0: The formatted value of type destType used to combine with the formatted image data element
specified by coord. Can be a register, immediate value, or WAVESIZE.

src1: Used only for atomicimagenoret_cas (compare and swap). If the contents of the image are equal to
src0, then the contents of the location are replaced with src1. Their type is destType. Can be a register,
immediate value, or WAVESIZE.

Exceptions (see Chapter 13 Exceptions (p. 219))

Invalid address exceptions are allowed. May generate a memory exception if image data is unaligned.

For BRIG syntax, see 19.10.3 BRIG Syntax for Image Operations (p. 309).

7.6.2 Description

The atomic image no return (atomicimagenoret) operations are the same as the
atomic image (atomicimage) operations except they do not return the original value
of the image data element being updated. They therefore do not support the exch
operation.

For more information, see 7.5 Atomic Image (atomicimage) Operations (p. 165).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

168 Image Operations  

Examples

ld_global_rwimg $d1, [%rwimg1];
ld_global_rwimg $d2, [%rwimg2];
atomicimagenoret_and_3d_b32_rwimg_u32 $d1, ($s0, $s3, $s1), $s1;
atomicimagenoret_and_2d_b32_rwimg_u32 $d1, ($s0, $s3), $s2;
atomicimagenoret_and_1d_b32_rwimg_u32 $d1, $s1, $s10;
atomicimagenoret_or_1d_b32_rwimg_u32 $d1, $s1, $s3;
atomicimagenoret_xor_1db_b32_rwimg_u32 $d1, ($s1, $s2), $s3;
atomicimagenoret_add_3d_s32_rwimg_u32 $d1, ($s0, $s3, $s1), $s2;
atomicimagenoret_sub_2d_s64_rwimg_u32 $d2, ($s0, $s3), $d4;
atomicimagenoret_min_1d_u64_rwimg_u32 $d2, $s1, $d4;
atomicimagenoret_max_1da_u64_rwimg_u32 $d2, ($s1, $s2), $d4;
atomicimagenoret_cas_1d_b32_rwimg_u32 $d1, $s1, $s3, $s4;

7.7 Query Image and Query Sampler Operations
The query image and query sampler operations query an attribute of an image object
or a sampler object.

7.7.1 Syntax

Table 7–11 Syntax for Query Image and Query Sampler Operations

Opcode Operands

queryimagewidth_destType_imageType dest, image

queryimageheight_destType_imageType dest, image

queryimagedepth_destType_imageType dest, image

queryimagearray_destType_imageType dest, image

queryimageorder_destType_imageType dest, image

queryimageformat_destType_imageType dest, image

querysamplercoord_destType_samp dest, sampler

querysamplerfilter_destType_samp dest, sampler

Explanation of Modifier

destType: Destination type: u32. See Table 4–2 (p. 46).

imageType: Image object type: roimg, rwimg. See Table 4–4 (p. 47).

samp: Sampler object type. See Table 4–4 (p. 47).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Image Operations 169

Explanation of Operands

dest: Destination register or type u32.

image: A source operand d register that contains a value of an image object of type imageType. It is
undefined if the value was not originally loaded from a global, readonly, or kernarg segment variable of
type imageType, or from an arg segment variable that is of type imageType that was initialized with a value
that is of type imageType.

sampler: A source operand d register that contains a value of a sampler object. It is always of type samp.
It is undefined if the value was not originally loaded from a global, readonly, or kernarg segment variable
of type samp, or from an arg segment variable that is of type samp that was initialized with a value that is
of type samp.

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.3 BRIG Syntax for Image Operations (p. 309).

7.7.2 Description

Each query returns a 32-bit value giving a property of the source:

Query Returns

width Image width in elements.

height Image height in elements. Must be 1 if the image is 1D or 1DA.

depth Image depth in elements. Must be 1 if the image is 1D, 2D, 1DA, or 2DA.

array The number of image data sets in a 1DA or 2DA image, or 1 for image types that are not arrays.

order An image order property (see Table 7–2 (p. 152)) encoded as an integer according to 19.2.10
BrigImageOrder (p. 255).

format An image format property (see Table 7–1 (p. 152)) encoded as an integer according to 19.2.8
BrigImageFormat (p. 254).

coord A sampler coordinate property encoded as an integer according to 19.2.21 BrigSamplerCoord (p.
261).

filter A sampler filter property encoded as an integer according to 19.2.22 BrigSamplerFilter (p. 261).

Examples

ld_global_rwimg $d1, [%rwimg1];
ld_kernarg_roimg $d2, [%roimg2];
ld_readonly_samp $d3, [%samp1];
queryimagewidth_u32_rwimg $s1, $d1;
queryimageheight_u32_rwimg $s0, $d1;
queryimagedepth_u32_rwimg $s0, $d1;
queryimagearray_u32_roimg $s1, $d2;
queryimageorder_u32_roimg $s0, $d2;
queryimageformat_u32_roimg $s0, $d2;
querysamplercoord_u32_samp $s0, $d3;
querysamplerfilter_u32_samp $s0, $d3;

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

170 Image Operations  

Chapter 8

Branch Operations
This chapter describes the direct and indirect branch operations.

8.1 Branches in HSAIL
Like many programming languages, HSAIL supports branch operations that can alter
the control flow.

The branch operations are:

• brn — Unconditional branch

• cbr — Conditional branch

There are two forms of each branch operation: direct and indirect.

8.1.1 Direct Branches

The direct branch operations work this way:

• brn (the unconditional branch) transfers control to a label.

• cbr (the conditional branch) checks a source and transfers control to either the
label (if the source is true), or the statement after the cbr (if the source is false).

An unconditional direct branch could be written in pseudocode as:
goto k1;
// some code
:k1;

and might be translated into HSAIL as:
brn @k1;
// some code
@k1:

A conditional direct branch could be written in pseudocode as:
if (condition)
 {
 // then statements
 }
else
 {
 // else statements
 }

and might be translated into HSAIL as:

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Branch Operations 171

// compute the condition into $c0
cbr $c0, @k1;
// code for the else statements
brn @join;
@k1:
// code the then statements
@join:

Because HSAIL allows implementations to execute code in wavefronts with size
greater than 1, branches can sometimes introduce performance issues.

For example, a single cbr operation might transfer control to the label for work-items
where the source is true and to the operation after the cbr for work-items where the
source is false. In this case, the wavefront is said to diverge, and the code is inside
divergent control flow. See 2.13 Divergent Control Flow (p. 21).

In divergent control flow, an implementation is allowed to execute all the work-items
where the condition has evaluated to be true, with the other work-items waiting,
followed by execution of the work-items where the condition was evaluated to be
false.

In the above example, the time to execute it would be the sum of the time it takes to
execute the if block plus the time it takes to execute the else block, if the cbr diverged.
If the cbr does not diverge, then the time to execute the example would only be the
time it takes for the non-divergent path to execute. That is, either the if block or the
else block but not both.

8.1.2 Indirect Branches

Indirect branch operations can have multiple targets.

All work-items take the branch, but because the target is in a register, they can go to
different targets.

You can use the optional argument possible-targets to list the possible targets.
(Some implementations might generate more efficient code if the list of possible targets
is known when the code is finalized.)

possible-targets can be any of the following:

• Omitted.

If possible-targets is omitted, the branch can target (jump to) any label in the
current function that appears in an ldc operation (see 5.8 Copy (Move)
Operations (p. 83)) or in the initializer of a global or readonly variable definition.

Implementations might produce slower code when this option is used.
// method 1 - any label that appeared in an ldc

ldc_u32 $s1, @label;
brn $s1;
cbr $c1, $s1;
//...
@label:
// ...

• A label (in square brackets) of a labeltargets statement.

In this case, the branch can target (jump to) any label in the list of targets in the
labeltargets statement.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

172 Branch Operations  

The behavior is undefined if the value in the target register is not in the list of
targets in the labeltargets statement.

A programmer might use this method if a lot of conditional indirect branches go
to the same places.
// method 2 - using label targets

@tab: labeltargets @a1, @a2;
ld_global_u32 $s1, [&x][$s0];
brn_width(4) $s1, [@tab];
brn $s1, [@tab];

cbr_width(4) $c1, $s1, [@tab];
cbr $c1, $s1, [@tab];

@a1:
// ...
@a2:
// ...

• An identifier (in square brackets) of a u32 array with a label initializer.

In this case, the branch can target (jump to) any label in the initializer list.

The behavior is undefined if the value in the target register is not in the initializer
list.
// method 3 - using an array of targets
global_u32 %x[] = {@a3, @a4};
// ...
brn_width(all) $s1, [%x];
// ...
brn $s1, [%x];

// each work-item uses its own value of $c1 to determine if
// it branches and its own value of $s1 to determine where to go

cbr_width(all) $c1, $s1, [%x];
// ...
cbr $c1, $s1, [%x];

@a1:
// ...
@a2:
// ...
@a3:
// ...
@a4:
// ...

Because a register might hold different values in different work-items, even a brn
operation can diverge.

8.2 Direct and Indirect Branch Operations

8.2.1 Syntax

Table 8–1 Syntax for Unconditional Direct Branch Operation

Opcode and Modifier Operands

brn direct-branch-target

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Branch Operations 173

Table 8–2 Syntax for Conditional Direct Branch Operation

Opcode and Modifier Operands

cbr_width src0, direct-branch-target

Table 8–3 Syntax for Unconditional Indirect Branch Operation

Opcode and Modifier Operands

brn_width src0, possible-targets

Table 8–4 Syntax for Conditional Indirect Branch Operation

Opcode and Modifier Operands

cbr_width src0, src1, possible-targets

Explanation of Modifiers

width: Optional: width(n), width(WAVESIZE), or width(all).

For the direct form of brn, width(all) is the only possible value, so there is no need for the width modifier.

For cbr and the indirect form of brn, the width modifier specifies the number of consecutive work-items
in flattened ID order that are guaranteed to branch to the same address. If this modifier is omitted, each
work-item in the work-group is allowed to branch independently (in other words, width(1) is the default).
For example, when width(all) is specified, the value in src1 must be uniform over each work-group
(the same in all work-items in the work-group).

For more information, see 8.3 Using the Width Modifier (p. 175).

Explanation of Operands

src0:

For brn, src0 is the address of the destination. Must be an s or d register, depending on the memory model,
that holds the address of a label. See Table 2–3 (p. 20).

For cbr, src0 determines if the branch is taken. Must be a control (c) register.

direct-branch-target: Target of the direct branch. Must be a label.

src1: Target of the conditional indirect branch. Must be an s or d register, depending on the memory
model, that holds the address of a label. See Table 2–3 (p. 20).

possible-targets: Optional. Possible targets of the indirect branch. Either a label in square brackets of a
labeltargets statement or an identifier (in square brackets) of a u32 array with a label initializer. See
8.4 Label Targets (labeltargets Statement) (p. 176).

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.4 BRIG Syntax for Branch Operations (p. 309).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

174 Branch Operations  

8.2.2 Description

If the source src0 of the cbr is true (non-zero), work-items will branch to the target;
otherwise the remaining work-items will fall through and execute the operation after
the branch.

If the target is a label, the flow can only go to the label or the fall-through.

If the target is in a register, there might be multiple targets.

See also 8.4 Label Targets (labeltargets Statement) (p. 176) and 8.3 Using the Width
Modifier (p. 175).

Examples

cbr_width(2) $c0, @label;
cbr_width(all) $c0, @label;
cbr $c0, @label;

brn @label2;

cbr $c1, $s1;
cbr_width(2) $c1, $s1;
cbr_width(all) $c1, $s1;

global_u32 %jumptable[3] = {@label, @label2, @label3};
global_u32 %jumptable2[3] = {@label, @label2, @label3};

cbr $c1, $s1, [@targets];
cbr_width(2) $c1, $s1, [%jumptable];
cbr_width(all) $c1, $s1, [@targets];

@targets: labeltargets @label1, @label2, @label3;
brn $s1, [@targets];
brn $s1, [%jumptable2];
// ...
@label1:
// ...
@label2:
// ...
@label3:
// ...

8.3 Using the Width Modifier
Sometimes a finalizer can generate more efficient code if it knows details about how
divergent a branch might be.

Sometimes it is possible to know that a subset of the work-items will transfer to the
same target, even when all the work-items will not. HSAIL uses the width modifier to
provide this information.

If the application knows that n (n being a power of 2) consecutive work-items in
flattened ID order will transfer to the same target, this can be specified as width(n).

For example, see the following pseudocode (part of a reduction):

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Branch Operations 175

for (unsigned int s = 512; s>=64; s>>=1)
{
 int id = workitemid(0);
 if (id < s) {
 sdata[id] += sdata[id + s];
 }
 barrier;
}

s will have the values 512, 256, 128, 64, and consecutive work-items in groups of 64 will
always go the same way.

For best performance, the if should be coded as cbr_width(64).

width(all) indicates that all work-items in the work-group will transfer to the same
location. If a developer knows or a compiler determined that the condition in the
example above was independent of the work-item ID, then a possibly more efficient
way to code the example would be to use the width(all) modifier:
cbr_width(all) $c0, @l1;
// ...
@l1:

This specifies that either all work-items will go to @l1 or none of them will.

width(WAVESIZE) can be used to indicate that all work-items in the implementation-
defined wavefront size will transfer to the same location. This requires that the kernel
algorithm has been explicitly written to use WAVESIZE appropriately. This in turn may
require that the kernel is dispatched using values dependent on the wavefront size.
For example, the algorithm may require that the work-group size and dynamic group
memory allocation be a function of the wavefront size. The wavefront size for a
particular finalized kernel can be obtained by a runtime query. Using
width(WAVESIZE) may allow the finalizer to optimize.

The width modifier does not cause the finalizer to group work-items into wavefronts
in a different way (the assignment of work-items to wavefronts is fixed). The width
modifier allows a finalizer to determine if every work-item in a wavefront will do the
operation in the same way.

See also 2.13.1 Width Modifier (p. 22).

8.4 Label Targets (labeltargets Statement)
When a register is the target of a branch operation, the finalizer can often generate
better code if it knows the possible targets. The labeltargets statement can be used
to supply this information to the finalizer.

The labeltargets statement is used only to provide a label list. It does not allocate any
storage.

The syntax is:
label: labeltargets ListofLabels

For example:

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

176 Branch Operations  

@targets: labeltargets @l1, @l2, @l3;
// ...
cbr $c1, $s0, [@targets];
// ...
@l1:
// ...
@l2:
// ...
@l3:
// ...

The labeltargets statement can only appear inside a kernel or function.

It is not legal to transfer control out of the kernel or function.

Every target in the ListofLabels must be inside the same kernel or function.

If a labeltargets statement is supplied, it is undefined to jump to a label not listed in
the labeltargets statement.

If a labeltargets statement is not supplied, it is legal to jump to any label defined in
the current kernel or function that has appeared as the source of an ldc operation or
in the initializer of a global or readonly variable.

The label in a labeltargets statement is not a legal target for a jump, and cannot
appear in an ldc operation or in an initializer list.

For more information, see 8.2 Direct and Indirect Branch Operations (p. 173).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Branch Operations 177

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

178 Branch Operations  

Chapter 9

Parallel Synchronization and
Communication Operations

This chapter describes operations used for cross work-item communication.

9.1 Memory Fence Modifier
Some parallel synchronization operations have a memory fence modifier that
specifies which memory segments the operation forces to become synchronized.

There are two memory segments that can be synchronized with a memory fence: the
group segment and the global segment.

Implementations cannot move memory operations to the synchronized memory
segment over a memory fence operation. A memory fence operation is always a two-
way fence. It waits for all prior loads and stores to the synchronized memory segment
to complete. Synchronizing a memory segment ensures that the work-item executing
the memory fence operation will not proceed until all previous values it has stored to
that memory segment have become visible to other work-items and agents, and that
all previous values it has loaded from that memory segment have completed. It also
ensures that any memory store operations after the memory fence operation will not
become visible to other work-items or agents unless those being made visible by the
fence operation are visible, and that any memory load operations after the memory
fence operation will see the values made visible by memory fence operations that have
previously been executed by other work-items or agents.

The group segment is only synchronized with other work-items in the same work-
group. It does not synchronize with group segment memory operations of work-items
in other work-groups, which operate on a different group segment.

The global segment can be synchronized with all work-items and agents, or be
synchronized just with the work-items in the same work-group (termed a partial
memory fence). A global segment fence includes both memory operations to the global
segment (ld, st, atomic, and atomicnoret), and operations to read-write images
(ldimage, rdimage, stimage, atomicimage, and atomicimagenoret).

A partial global segment memory fence is not guaranteed to make global segment
memory or read-write image stores by the work-item visible to work-items in other
work-groups or other agents. The global segment memory values stored by work-
items in other work-groups or other agents are not guaranteed to become visible to
the work-items of this work-group, even if the other work-items or agents execute a
global memory fence operation. Because changes to global memory must eventually
happen, limiting synchronization to the work-group does not give an implementation
permission to delete a global memory store operation even if it can determine that no
work-item in the work-group will read the changed location.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Parallel Synchronization and Communication Operations 179

A partial global segment memory fence is appropriate when work-items will write to
global segment memory or read-write images, and other work-items will read back
those values, but all communication will only happen between work-items in the same
work-group. A partial global segment memory fence might be more efficient on some
implementations than a regular global segment fence.

For example, the amount of data the work-items within a work-group are exchanging
might be too large to fit into group memory. In this case, they could use the global
segment, and partial global segment memory fences, because the data is only being
shared by work-items in the same work-group. In some implementations (for
example, ones that share an L1 cache over a work-group), the use of a partial memory
fence might allow an implementation to reduce memory traffic and so would be more
efficient than a regular global segment memory fence.

The valid values for the memory fence are:

• fnone — specifies that no memory fence is performed. Some operations do not
allow this value.

• fgroup — specifies that all prior group segment memory operations by the
work-item must complete. Global segment or read-write image operations are
not guaranteed to have completed.

• fglobal — specifies that all prior global segment operations and read-write
image operations by the work-item must complete. Group segment operations
are not guaranteed to have completed.

• fboth — specifies that group segment operations by the work-item, and global
segment and read-write image operations by the work-item, must complete.

• fpartial — specifies that all prior global segment operations and read-write
image operations by the work-item must complete with respect to other work-
items in the work-group. Global segment and read-write image operations by
work-items in other work-groups and other agents and group segment
operations are not guaranteed to have completed.

• fpartialboth — specifies that group segment operations, global segment
operations, and read-write image operations by the work-item must complete
with respect to other work-items in the work-group. Global segment, or read-
only image operations by work-items in other work-groups, or by other agents,
are not guaranteed to have completed.

If an operation has an optional memory fence modifier, it specifies the value used if it
is omitted.

9.2 barrier Operation
The barrier operation is used to synchronize work-item execution in a work-group
and optionally act as a memory fence.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

180 Parallel Synchronization and Communication Operations  

9.2.1 Syntax

Table 9–1 Syntax for barrier Operation

Opcode and Modifiers

barrier_width_fence

Explanation of Modifiers

width: Optional. Must be width(n) or width(WAVESIZE). Used to indicate the communication pattern
among work-items. Specifies the number of consecutive work-items in flattened ID order that can
communicate, guaranteeing that there is no communication between work-items outside the consecutive
work-items.

If this modifier is omitted, any work-item in the work-group can communicate with any other. In other
words, the default is equivalent to width(all). width(all) cannot be specified, because it would be the
same as the default.

See 2.13.1 Width Modifier (p. 22).

fence: Optional. The memory segment that the barrier operation forces to become synchronized. Either
fnone, fgroup, fglobal, fboth, fpartial, or fpartialboth. If omitted, fboth is used. See 9.1 Memory
Fence Modifier (p. 179).

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.5 BRIG Syntax for Parallel Synchronization and
Communication Operations (p. 310).

9.2.2 Description

The barrier operation is used to synchronize work-items in a work-group such that
all work-items must have reached this point before any one of them can go farther.

If the barrier operation is used inside of divergent control flow, the result is
undefined. (See 2.13 Divergent Control Flow (p. 21).) The underlying threading model
is undefined by the specification, so some architectures might reach deadlock in the
presence of divergent barriers while others might not correctly synchronize.

A barrier operation can be used in a loop provided the loop introduces no divergent
control flow. This requires that all work-items in the work-group execute the loop the
same number of iterations.

The barrier operation also acts as a memory fence. No work-items in a work-group
can proceed past the barrier until prior stores have become visible. The memory
fence modifier (fence) is used to specify which stores, and to which work-items and
agents the stores must be visible. See 9.1 Memory Fence Modifier (p. 179). Because a
barrier ensures that all work-items of a work-group are synchronized, this also
ensures that all work-items of the work-group perform the memory fence.

See also 9.3 Fine-Grain Barrier (fbar) Operations (p. 182).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Parallel Synchronization and Communication Operations 181

If an implementation has a wavefront size that is greater than or equal to n, the
implementation is free to remove the barrier. However, even if the barrier is
removed, memory operations cannot be moved over the barrier location.

Examples

barrier;
barrier_width(64);
barrier_fgroup;
barrier_fglobal;

9.3 Fine-Grain Barrier (fbar) Operations

9.3.1 Overview: What Is an Fbarrier?

In certain situations, barrier synchronization (which is synchronization over all work-
items in a work-group) is too coarse. Applications might find it convenient to
synchronize at a finer level, over a subset of the work-items within the work-group.
A fine-grain barrier object called an fbarrier is needed for this subset. The work-items
in the subset are said to be members of the fbarrier.

An fbarrier is defined using the fbarrier statement which can appear either in
compilation unit scope or in kernel or function scope. For example:
fbarrier &fb;

Fbarriers are used to synchronize only between work-items within a work-group that
are wavefront uniform. As such, an fbarrier has work-group persistence (see 2.9.1
Persistence Rules (p. 19)): it has the same allocation, persistence, and addressability
rules as a group segment variable. The naming and visibility of an fbarrier follows the
same rules as variables.

An fbarrier is an opaque entity and its size and representation are implementation-
defined. It is also implementation-defined in which kind of memory fbarriers are
allocated. For example, an fbarrier can use dedicated hardware, or can use memory
in the group or global segments. An implementation is allowed to limit the number of
fbarriers it supports, but must support a minimum of 32 per work-group. The total
number of fbarriers supported by a compute unit might limit the number of work-
groups that can be executed simultaneously. An implementation can use group
segment memory to implement fbarriers, which will reduce the amount of group
segment memory available to group segment variables. If a kernel uses more fbarriers
than an HSA component supports, then an error must be reported by the finalizer.

An fbarrier conceptually contains three fields:

• Unsigned integer member_count — the number of wavefronts in the work-group
that are members of the fbarrier.

• Unsigned integer arrive_count — the number of wavefronts in the work-group
that are either currently waiting on the fbarrier or have arrived at the fbarrier.

• SetOfWavefrontId wait_set — the set of wavefronts currently waiting on the
fbarrier.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

182 Parallel Synchronization and Communication Operations  

An fbarrier is an opaque object and can only be accessed using fbarrier operations.
An implementation is free to implement the semantics implied by these conceptual
fields in any way it chooses, and is not restricted to having these exact fields.

The fbarrier operations are described below. They can refer to the fbarrier they
operate on by the identifier of the fbarrier statement.

The address of an fbarrier can be taken with the ldf operation. This returns a u32
value in a register that can also be used by fbarrier operations to specify which
fbarrier to operate on.

9.3.2 Syntax

Table 9–2 Syntax for fbar Operations

Opcodes Operands

initfbar src

joinfbar_width src

waitfbar_width_fence src

arrivefbar_width_fence src

leavefbar_width src

releasefbar src

ldf_u32 dest, fbarrierName

Explanation of Modifier

width: Optional: width(n), width(WAVESIZE), or width(all). If n is specified, it must be a multiple of
WAVESIZE. If the width modifier is omitted, it defaults to width(WAVESIZE). See 2.13.1 Width Modifier (p.
22)).

fence: Optional. The memory segment that the fbarrier operation forces to become synchronized. Either
fnone, fgroup, fglobal, fboth, fpartial, or fpartialboth. If omitted, defaults to fboth. See 9.1 Memory
Fence Modifier (p. 179)).

Explanation of Operands

src: Either the name of an fbarrier, or an s register containing a value produced by an ldf operation. If a
register, its compound type is u32.

fbarrierName: Name of the fbarrier on which to operate.

dest: An s register.

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.5 BRIG Syntax for Parallel Synchronization and
Communication Operations (p. 310).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Parallel Synchronization and Communication Operations 183

9.3.3 Description

initfbar
Before an fbarrier can be used by any work-item in the work-group, it must be
initialized.

The src operand specifies the fbarrier to initialize.

initfbar conceptually sets the member_count and arrive_count to 0, and the
wait_set to empty. On some implementations, this operation might perform
allocation of additional resources associated with the fbarrier.

An fbarrier must not be initialized if it is already initialized. This implies only one
work-item of the work-group must perform the initfbar operation at a time.

An fbarrier must be initialized because a finalizer cannot know the full set of
fbarriers used by a work-group in the presence of dynamic group memory
allocation.

There must not be a race condition between the work-item that executes the
initfbar and any other work-items in the work-group that execute fbarrier
operations on the same fbarrier. This requirement can be satisfied by using the
barrier operation, or the waitfbaroperation (on another fbarrier) between the
initfbar and the fbarrier operations that use it.

Once an fbarrier has been initialized, its memory cannot be modified by any
operation except fbarrier operations until it is released by an releasefbar
operation.

joinfbar
Causes the work-item to become a member of the fbarrier.

The src operand specifies the fbarrier to join.

This operation (which includes the value of the src operand) must be wavefront
uniform (see 2.14 Uniform Operations (p. 23)). This implies that all active work-
items of a wavefront must be members of the same fbarriers.

joinfbar conceptually atomically increments the member_count for the wavefront.

A work-item must not join an fbarrier that has not been initialized, nor join an
fbarrier of which it is already a member.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

184 Parallel Synchronization and Communication Operations  

waitfbar
Indicates that the work-item has arrived at the fbarrier, and causes execution of
the work-item to wait until all other work-items of the same work-group that are
members of the same fbarrier have arrived at the fbarrier.

The src operand specifies the fbarrier on which to wait.

An waitfbar operation can also optionally perform a memory fence to ensure that
any data being communicated becomes visible. The memory fence is performed
after all work-items that are members of the fbarrier have arrived at the fbarrier
and before the work-items waiting at the fbarrier proceed with execution. See 9.1
Memory Fence Modifier (p. 179).

This operation (which includes the value of the src operand) must be wavefront
uniform (see 2.14 Uniform Operations (p. 23)). This implies that all active work-
items of a wavefront arrive at an waitfbar together.

waitfbar conceptually atomically increments the arrive_count for the wavefront,
and adds the wavefront to the wait_set. It then atomically checks and waits until
the arrive_count equals the member_count, at which point any wavefronts in the
wait_set are allowed to proceed, the arrive_count is reset to 0, and the
wait_set reset to empty.

A work-item must not wait on an fbarrier that has not been initialized, nor wait on
an fbarrier of which it is not a member.

arrivefbar
Indicates that the work-item has arrived at the fbarrier, but does not wait for other
work-items that are members of the fbarrier to arrive at the same fbarrier. If the
work-item is the last of the fbarrier members to arrive, then any work-items
waiting on the fbarrier can proceed and the fbarrier is reset.

The src operand specifies the fbarrier on which to arrive.

An arrivefbar operation can also optionally perform a memory fence before
proceeding to ensure that any data being communicated becomes visible. See 9.1
Memory Fence Modifier (p. 179).

This operation (which includes the value of the src operand) must be wavefront
uniform (see 2.14 Uniform Operations (p. 23)). This implies that all active work-
items of a wavefront arrive at an arrivefbar together.

arrivefbar conceptually atomically increments the arrive_count for the
wavefront, and checks if the arrive_count equals the member_count. If it does, then
atomically any wavefronts in the wait_set are allowed to proceed, the
arrive_count is reset to 0, and the wait_set is reset to empty.

A work-item must not arrive at an fbarrier that has not been initialized, nor arrive
at an fbarrier of which it is not a member.

After a work-item has arrived at an fbarrier, it cannot wait, arrive, or leave the
same fbarrier unless the fbarrier has been satisfied and the arrive_count has been
reset to 0.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Parallel Synchronization and Communication Operations 185

leavefbar
Indicates that the work-item is no longer a member of the fbarrier. It does not wait
for other work-items that are members of the fbarrier to arrive. If the work-item
is the last of the fbarrier members to arrive, then any work-items waiting on the
fbarrier can proceed and the fbarrier is reset.

The src operand specifies the fbarrier to leave.

Every work-item that joins an fbarrier must leave the fbarrier before it exits.

An leavefbar operation does not perform a memory fence before proceeding. An
explicit sync operation can be used if that is required in order to make any data
being communicated visible.

This operation (which includes the value of the src operand) must be wavefront
uniform (see 2.14 Uniform Operations (p. 23)). This implies that all active work-
items of a wavefront must be members of the same fbarriers.

leavefbar conceptually atomically decrements the member_count for the
wavefront, and checks if the arrive_count equals the member_count . If it does, then
atomically any wavefronts in the wait_set are allowed to proceed, the
arrive_count is reset to 0, and the wait_set is reset to empty.

A work-item must not leave an fbarrier that has not been initialized, nor leave an
fbarrier of which it is not a member.

releasefbar
Before all work-items of a work-group exit, every fbarrier that has been initialized
by a work-item of the work-group using initfbar must be released.

The src operand specifies the fbarrier to release.

Once released, the fbarrier is no longer considered initialized. An fbarrier must not
be released if it is not already initialized. This implies that only one work-item of
the work-group must perform the releasefbar operation at a time.

An fbarrier must have no members when released. This implies that every work-
item that joins an fbarrier must leave the fbarrier before it exits.

An fbarrier must be released, because some implementations might need to
deallocate the additional resources allocated to an fbarrier when it was initialized.

There must not be a race condition between the other work-items in the work-
group that execute fbarrier operations on the same fbarrier and the work-item that
executes the releasefbar. This requirement can be satisfied by using the
barrier operation, or the waitfbar operation (on another fbarrier) between the
fbarrier operations that use it and the releasefbar.

ldf
Places the address of an fbarrier into the destination dest. The address has work-
group persistence (see 2.9.1 Persistence Rules (p. 19)) and the value can only be used
in work-items that belong to the same work-group as the work-item that executed
the ldf operation. The compound type dest is always u32 regardless of the
machine model (see 2.10 Small and Large Machine Models (p. 20)). The value
returned can be used with fbarrier operations to specify which fbarrier they are
to operate on.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

186 Parallel Synchronization and Communication Operations  

9.3.4 Additional Information About Fbarrier Operations

Additional information about the use of fbarrier operations:

• Fbarrier operations are allowed in divergent code. In fact, this is a primary
reason to use fbarriers rather than the barrier operation, which can only be
used in work-group uniform code. However, fbarrier usage must be wavefront
uniform.

• The fbarrier operation that arrives at an fbarrier does not need to be the same
operation in each wavefront. The operation simply needs to reference the same
fbarrier.

• The fbarrier operations that operate on a particular fbarrier do not need to be
in the same code block. They are allowed to be in both the kernel body and
different function bodies.

• Fbarriers can be used in functions. If the function is called in divergent code,
then an fbarrier can be passed by reference as an argument so the function has
an fbarrier that has all the work-items that are calling it as members. The
function can use this to synchronize usage of its own fbarriers.

• An fbarrier can be initialized and released multiple times. While not initialized,
the group memory associated with an fbarrier can be used for other purposes.
However, on some implementations, the cost to initialize and release an fbarrier
might make it preferable to only perform these operations once per work-group
fbarrier, and then reuse the same fbarrier by using joinfbar and leavefbar. A
barrier operation, or waitfbar (to another fbarrier) operation can be used
between the leavefbar and joinfbar operations to avoid race conditions
between the fbarrier operations that use the fbarrier for different purposes.

When using fbarrier operations, the following rules must be satisfied or the execution
behavior is undefined:

• All work-items that are members of an fbarrier must perform either an
waitfbar, arrivefbar, or leavefbar on the fbarrier; otherwise, deadlock will
occur when a work-item performs an waitfbar on the fbarrier.

• No work-item is allowed to be a member of any fbarrier when it exits. It must
perform an leavefbar on every fbarrier on which it performs an joinfbar.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Parallel Synchronization and Communication Operations 187

• While a work-item is waiting on an fbarrier, it is allowed for other work-items
in the same work-group to perform joinfbar, waitfbar, arrivefbar, and
leavefbar operations. All but joinfbar can cause the waiting work-items to be
allowed to proceed, either because the arrive_count is incremented to match
the member_count, or the member_count is decremented to match the
arrive_count.

However, there must not be a race condition between joinfbar operations and
waitfbar, arrivefbar, and leavefbar, operations such that the order in which
they are performed might affect the number of members the fbarrier has when
a wait is satisfied.

One way to satisfy this requirement is by using the barrier operation, or the
waitfbar operation (on another fbarrier), between the joinfbar and waitfbar,
arrivefbar, and leavefbar operations. This ensures that all work-items have
become members before any start arriving at the fbarrier. However, other uses
of barrier andwaitfbar (on another fbarrier) operations can also ensure the
race condition free requirement.

• Similarly, there cannot be a race condition between an arrivefbar operation
and other fbarrier operations that could result in the same work-item
performing more than one fbarrier operation on the same fbarrier without the
fbarrier having been satisfied and the arrive_count being reset to 0.

This requirement can also be satisfied by using a barrier or waitfbar (on
another fbarrier) operation after the arrivefbar operation.

9.3.5 Pseudocode Examples

To use fbarriers in divergent code, it is necessary to create an fbarrier with only the
work-items that are executing the divergent code. This can be done by creating an
fbarrier with all the work-items and then using leavefbar on the non-interesting
divergent paths as shown in Example 1.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

188 Parallel Synchronization and Communication Operations  

Example 1: Using leavefbar to create an fbarrier that only contains
 divergent work-items.
01: fbarrier %fb1;
02: if (workitemflatid_u32 == 0) {
03: initfbar %fb1;
04: }
05: barrier_fnone;
06: joinfbar %fb1; // start with all work-items
07: barrier_fnone;
08: if (cond1) { // cond1 must be WAVESIZE uniform
09: ...
10: if (cond2) { // cond2 must be WAVESIZE uniform
11: ...
12: waitfbar_fglobal %fb1; // fb1 only has work-items for which
 // cond1 && cond2 is true as other
 // work-items have left on
 // lines 16 and 19.
13: ...
14: leavefbar %fb1;
15: } else {
16: leavefbar %fb1;
17: }
18: } else {
19: leavefbar %fb1;
20: }
21: barrier_fnone;
22: if (workitemflatid_u32 == 0) {
23: releasefbar %fb1;
24: }

Or an fbarrier can be created that has all the work-items on all divergent paths, and
then using this to synchronize creating another fbarrier that only the work-items
executing the desired divergent path join as shown in Example 2.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Parallel Synchronization and Communication Operations 189

Example 2: Using joinfbar to create an fbarrier that only contains
 divergent work-items.

01: fbarrier %fb0;
02: fbarrier %fb1;
03: if (workitemflatid_u32 == 0) {
05: initfbar %fb0;
06: initfbar %fb1;
07: }
08: barrier_fnone;
09: joinfbar %fb0; // fb0 has all work-items of work-group
10: barrier_fnone;
11: if (cond1) { // cond1 must be WAVESIZE uniform
12: ...
13: if (cond2) { // cond2 must be WAVESIZE uniform
14: joinfbar %fb1;
15: waitfbar_fnone %fb0; // wait for all work-items to either
 // join fb1 on line 14 or arrive at
 // line 21 or 24
16: ...
17: waitfbar_fglobal %fb1; // fb1 only has work-items for which
 // cond1 && cond2 is true
18: ...
19: leavefbar %fb1;
20: } else {
21: waitfbar_fnone %fb0;
22: }
23: } else {
24: waitfbar_fnone %fb0;
25: }
26: leavefbar %fb0;
27: barrier_fnone;
28: if (workitemflatid_u32 == 0) {
29: releasefbar %fb0;
30: releasefbar %fb1;
31: }

The following example uses two fbarriers to allow producer and consumer
wavefronts to overlap execution.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

190 Parallel Synchronization and Communication Operations  

Example 3: Producer/consumer using two fbarriers that allow
 producer and consumer wavefront executions to overlap.

kernel producerConsumer()
{
 // Declare the fbarriers.
 fbarrier %producer_fb;
 fbarrier %consumer_fb;

 // Use a single work-item to initialize the fbarriers.
 if (workitemflatid_u32 == 0) {
 initfbar [%produced_fb];
 initfbar [%consumed_fb];
 }
 // Wait for fbarriers to be initialized before using them.
 // No memory fence required as no data has been produced yet.
 barrier_fnone;

 // All work-items join both fbarriers.
 joinfbar [%fb_produced];
 joinfbar [%fb_consumed];
 // Wait for all fbarriers to join to prevent a race condition
 // between join and subsequent wait.
 // No memory fence required as no data has been produced yet.
 barrier_fnone;

 // Ensure all produces and consumers are in the same wavefront
 // so that the fbarrier operations are wavefront uniform.
 producer = ((workitemflatid_u32 / WAVESIZE) & 1) == 1;

 if (producer) {
 for (i = 0 to n) {
 // Producer compute new data.

 // Wait until all consumers have processed the previous
 // data before storing the new data.
 // No need for a memory fence as consumer is producing no data
 // used by the consumer.
 waitfbar_fnone [%consumed_fb];
 // fill in new data in some group segment buffer data.
 // Tell the consumers the data is ready.
 // Using arrive allows the producer to continue computing new data
 // before all consumers have read this data.
 // Memory fence should correspond to segment holding data to
 // make sure it is visible to consumer.
 arrivefbar_fgroup [%produced_fb];
 } else {
 // Tell producer ready to receive new data. This is the
 // initial state of a consumer.
 // No memory barrier required as consumer is not producing any data.
 arrivefbar_fnone [%consumed_fb];

 for (j = 0 to n) {
 // Wait for all producers to store new data.
 // Memory fence should correspond to segment holding data to make
 // sure it is visible to consumer.
 waitfbar_fgroup [%produced_fb];

 // Consumer reads the new data

 // Only need to tell producer have read data if there is
 // another value to be produced.
 if (j != n) {
 // Tell producer have read new data.
 // Using arrive allows the consumer to start processing the data
 // before all consumers have read the data.
 // No memory barrier required as consumer is not producing any data.
 arrivefbar_fnone [%consumed_fb];
 }

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Parallel Synchronization and Communication Operations 191

 // Consumer processes new data.
 }
 }
 // Ensure each work-item leaves the fbarriers it has
 // joined before it terminates.
 leavefbar %producer_fb;
 leavefbar %consumer_fb;

 // Wait for fbarriers to be finished with before releasing them.
 // No memory fence required as no data has been produced.
 barrier_fnone;

 // Use a single work-item to release the fbarriers.
 if (workitemflatid_u32 == 0) {
 releasefbar %produced_fb;
 releasefbar %consumed_fb;
 }
 }

Examples

fbarrier %fb;
initfbar %fb;
joinfbar %fb;
waitfbar_fglobal %fb;
waitfbar %fb;
arrivefbar_fpartial %fb;
leavefbar %fb;
releasefbar %fb;
ldf_u32 $s0, %fb;
joinfbar $s0;

9.4 Synchronization (sync) Operation
The sync operation makes sure that the writes in the program preceding the sync
have been fully committed to memory before the program continues.

9.4.1 Syntax

Table 9–3 Syntax for sync Operation

Opcode and Modifier

sync_fence

Explanation of Modifier

fence: Optional. The memory segment that the sync operation forces to become synchronized. Either
fgroup, fglobal, fboth, fpartial, or fpartialboth. fnone is not allowed, because this is a memory
synchronization operation. If omitted, fboth is used. See 9.1 Memory Fence Modifier (p. 179).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

192 Parallel Synchronization and Communication Operations  

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.5 BRIG Syntax for Parallel Synchronization and
Communication Operations (p. 310).

9.4.2 Description

The sync operation is always a two-way fence. It waits for all prior loads and stores to
complete. See 9.1 Memory Fence Modifier (p. 179).

For example:
st_fglobal_u32 1, [&x];
sync; // will wait till 1 is stored into memory

The sync operation can be used in conditional code.

Examples

sync;
sync_fgroup;

9.5 Cross-Lane Operations
These operations perform work across lanes in a wavefront.

9.5.1 Syntax

Table 9–4 Syntax for Cross-Lane Operations

Opcodes Operands

countlane_u32 dest, src0

countuplane_u32 dest

masklane_b64 dest, src0

sendlane_b32 dest, src0, src1

receivelane_b32 dest, src0, src1

Explanation of Operands

dest: Destination register. For countlane, countuplane, sendlane, and receivelane, dest must be an s
register. For masklane, dest is a d register.

src0, src1: Sources. For countlane and masklane, can be a c register, s register, an immediate value, or
WAVESIZE. For sendlane and receivelane, can be an s register, an immediate value, or WAVESIZE.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Parallel Synchronization and Communication Operations 193

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.5 BRIG Syntax for Parallel Synchronization and
Communication Operations (p. 310).

9.5.2 Description

countlane
Counts the number of work-items in the current wavefront that have a non-zero
source src0. The operation returns a value greater than or equal to 0 and less than
or equal to WAVESIZE.

countuplane
Forms a prefix sum of the number of executing work-items in the current
wavefront. That is, the operation sets the destination dest in each work-item to the
count of the number of earlier (in flattened work-item order) work-items that
execute the statement.

Because countuplane gives each executing work-item in the wavefront a unique
value, it is often used in compaction.

masklane
Returns a bit mask that shows which work-items in the wavefront have a non-zero
source src0. The affected bit position within dest corresponds to each work-item’s
lane ID. Any remaining bits are cleared.

sendlane
Transfers the value in src0 to the destination lane specified in src1. The value in
src1 must be greater than or equal to 0 and less than WAVESIZE; otherwise the result
is undefined.

If either the receiving or sending lane is inactive, the value returned in the receiving
lane is undefined.

If the value in src1 is duplicated in different lanes, so that multiple lanes are sending
to the same lane, the value of dest in the receiving lane will be one of the values of
src0 from a sending lane. If no lane sends to dest, the value of dest is unchanged.

The sendlane operation is independent from the receivelane operation; they do
not form a matched pair.

receivelane
Transfers the data value in src0 to the current lane from the source lane specified
in src1. The value in src1 must be greater than or equal to 0 and less than
WAVESIZE; otherwise the result is undefined.

If either the receiving or sending lane is inactive, the value returned in the receiving
lane is undefined.

The receivelane operation is independent from the sendlane operation; they do
not form a matched pair.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

194 Parallel Synchronization and Communication Operations  

Examples

countlane_u32 $s1, $s2;

masklane_b64 $d1, $s0;

countuplane_u32 $s1;

sendlane_b32 $s1, $s2, 3;
sendlane_b32 $s1, 3, $s2;
sendlane_b32 $s1, $s2, $s2;

receivelane_b32 $s1, $s2, $s2;
receivelane_b32 $s1, 23, $s2;

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Parallel Synchronization and Communication Operations 195

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

196 Parallel Synchronization and Communication Operations  

Chapter 10

Functions
This chapter describes how to use functions in HSAIL.

See also Chapter 11 Operations Related to Functions (p. 205).

10.1 Functions in HSAIL
Like other programming languages, HSAIL provides support for user functions.

In order that HSAIL can execute efficiently on a wide range of compute units, an
abstract method is used for passing arguments, with the finalizer determining what
to do. This is necessary because, on a GPU, stacks are not a good use of resources,
especially if each work-item has its own stack. If an application is simultaneously
running, for example, 30,000 work-items, then the stack-per-work-item is very limited.
Having one return address per wavefront (not one address per work-item) is
desirable.

Implementations should map the abstractions into appropriate hardware.

Functions cannot be nested, but functions can be recursive.

10.1.1 Example of a Simple Function

The simplest function has no arguments and does not return a value. It is written in
HSAIL as follows:
function &foo()()
{
 ret;
};
function &bar()()
{
 {call &foo;} //start argument scope
};

Execution of the call operation transfers control to foo, implicitly saving the return
address. Execution of the ret operation within foo transfers control to the operation
following the call.

10.1.2 Example of a More Complex Function

Here is a more complex example of a function:

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Functions 197

// Call a compare function with two floating-point arguments
// Allocate multiple arg objects to hold arguments

// ...
{
 arg_f32 %a;
 arg_f32 %b;

// Fill in the arguments
 st_arg_f32 4f, [%a];
 st_arg_f32 $s0, [%b];
 arg_f32 %res;
 call &compare (%res)(%a, %b);
 ld_arg_f32 $s0, [%res];
} // End argument scope

// More code
};

function &compare (arg_f32 %res) (arg_f32 %left, arg_f32 %right)
{
 ld_arg_f32 $s0, [%left];
 ld_arg_f32 $s1, [%right];
 cmp_eq_f32_f32 $s0, $s1, $s0;
 st_arg_f32 $s0, [%res];
 ret;
};

10.1.3 Function Pointers

Function pointers can be set up in two ways:

• A load code address operation can store a pointer to a function into a 32-bit or
64-bit register. (See Table 2–3 (p. 20).) A register holding a function pointer can
then be used in a call statement. It is not valid to modify any function pointer
with arithmetic operations.

• A host CPU can use a runtime library call to obtain the address of a non-static
function. That address can then be passed into a kernel.

10.1.4 Functions That Do Not Return a Result

Functions that do not return a result are declared with an empty return arguments
list:
function &foo ()(arg_u32 %in)
{ // does not return a value
 ret;
};

10.2 Argument Passing Rules
Currently, HSAIL supports only a single output argument from a function. Additional
results can always be passed by allocating space in the caller and passing an address.
Later versions might allow additional output parameters.

Arguments in calls must be variables in the arg segment. (See 10.4 Arg Segment (p.
200).) Arguments are pass-by-value.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

198 Functions  

It is not legal to use the same name as both an input and an output argument.

The type and size of actual arguments must be compatible with the formal parameters.
An actual argument is compatible with a formal parameter if one of these three
properties holds:

• The two have identical properties, type, size, and alignment.

• Both are arrays with the same size and alignment and the elements have
identical properties.

• The argument is the last parameter and both are arrays with elements that have
identical properties, both arrays have the same alignment, and the formal is an
array with unspecified size. See 10.5 Variadic Functions (p. 202).

10.3 Function Declarations, Function Definitions, and
Function Signatures

Functions cannot be nested, but functions can be recursive.

Every function must be declared or defined prior to being called.

After a function has been declared, a call operation can use the function as a target.
See 11.1 call Operation (p. 205).

10.3.1 Function Declaration

A function declaration is a function without a code block. A function declaration
declares a function, providing attributes, the function name, and names and types of
the output and input arguments.

For example:
function &fun (arg_u32 %out) (arg_u32 %in0, arg_u32 %in1);

10.3.2 Function Definition

A function definition defines a function. It is a function declaration followed by a code
block:
function &fun (arg_u32 %out) (arg_u32 %in0, arg_u32 %in1)
{
 ret;
};
function &caller()()
{
 {
 arg_u32 %input1;
 arg_u32 %input2;
 call &fnWithTwoArgs ()(%input1, %input2); // call of a function
 // all work-items called
 }
 // ...
};

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Functions 199

10.3.3 Function Signature

A function signature does not describe a single function: it describes a set of functions
that have the same types for arguments.

A function signature declares a type of function. Obviously, the type cannot be called,
but it can be used to describe the target of a call by means of a function pointer.

A function signature contains attributes, the signature name, and the types (and
optional names) of the output and input arguments.

Syntactically, a signature is much like a function. A signature defines a name, which
must start with an ampersand (&). The name can be used in indirect function calls.

The syntax is:
'signature' name outputFormalArgs inputFormalArgs

where:

• outputFormalArgs is a parenthesized list of zero or one argument description
optionally followed by an identifier.

• inputFormalArgs is a parenthesized list of zero or more argument descriptions
optionally followed by identifiers.

An argument description contains up to three parts:

• An optional align n

• A type

• An optional identifier, which may have an array size

In the following example, assume that $d2 in each work-item contains the address of
a function whose arguments meet this signature:
signature &bar_t (arg_u32) (align 8 arg_f32, arg_f32 %x[10]);
signature &fun_t (arg_u32) (arg_u32, arg_u32);
function &caller1 ()()
{
 {
 arg_u32 %out;
 arg_u32 %in1;
 arg_u32 %in2;
call $d2 (%out)(%in1, %in2) &fun_t;
// ...
 }
};

This is a call of some function that takes two u32 arguments and returns a u32 result.
The particular target function is selected by the contents of register $d2. Each work-
item has its own $d2, so this might call many different functions.

The behavior is undefined if the register points to a function that does not match the
signature.

10.4 Arg Segment
When a call to a function is executed by a work-item, argument passing is done
through variables in the arg segment. Arg variables cannot be read or written by other
work-items.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

200 Functions  

Arg variables are allocated much like other variables but must be in an argument
scope. See 4.9 Argument Scope (p. 38). A function can allocate an arbitrary number of
arg variables. Each implementation is allowed to limit the number of bytes used for
the allocation of arg variables but must support a minimum of 64 bytes.

Arg variables can be used in ld, st, and lda operations.

The variants of st can modify arg variables, arg variables can be passed as arguments,
and lda can be used to take the address of an arg variable.

It is not legal to take the address of an arg variable that is not a formal parameter (that
is an argument defined in the current argument block).

Arg variables that are used to pass values into a function are live from the point of the
definition to the end of the argument scope.

Input arguments cannot be used after the call, but output arguments can be used to
read returned values.

Each work-item can set a different value into its own arg variable.

Calls to functions operate as described below.

In the caller:

1. Allocate arg locations to hold arguments.

2. Store the values into the input arguments.

3. Make the call.

4. Optionally load the result.

In the callee:

1. The arg comes into the function as a formal argument.

2. Code should use loads to access the arguments.

3. The callee can take the address of the arg variable and pass it to additional
subroutines.

4. Store the result into an output argument.

An arg object can be the address of an array that is allocated to private memory. The
arg object can be used to bundle up a sequence of actual arguments and then pass the
entire arg object to the function.

Array arg objects are useful in the following cases:

• To pass a large number of arguments to a function

• To pass a variable number of arguments to a function

• To pass arguments of different types to a function

• When code needs to take the address of an argument list

The finalizer can implement arg objects as physical registers or can map the arg object
into memory. Each finalizer release will document the argument convention for each
target chip.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Functions 201

10.5 Variadic Functions
A variadic function is a function that accepts a variable number of arguments.

In HSAIL, variadic functions are declared with a last argument, which is an array with
no specified size (for example, uint32 extra_args[]). The matching actual argument
must be a fixed-size array.

An array with unspecified size is only allowed as the last argument definition of a
function declaration, function definition, or function signature, or for a global symbol
definition that has an initializer. For more information, see 4.13.1 Integer Constants (p.
41).

10.5.1 Example of a Variadic Function

The example function below computes the sum of a list of floating-point values.

The first argument to the function is the size of the list.

The second argument is an array of floating-point values.
function &maxofN(arg_f32 %r)(arg_u32 %n, align 8 arg_u8 %last[])
{
 ld_arg_u32 $s0, [%n]; // s0 holds the number to add
 mov_b32 $s1, 0; // s1 holds the sum
 mov_b32 $s3, 0; // s3 is the offset into last
 @loop:
 cmp_eq_b1_u32 $c1, $s0, 0; // see if the count is zero
 cbr $c1, @done; // if it is, jump to done
 ld_arg_f32 $s4, [%last][$s3]; // load a value
 add_f32 $s1, $s1, $s4; // add the value
 add_u32 $s3, $s3, 4; // advance the offset to the next element
 sub_u32 $s0, $s0, 1; // decrement the count
 brn @loop;
 @done:
 st_arg_f32 $s1, [%r];
 ret;
};

kernel &adder()
{ // here is an example caller passing in 4 32-bit floats
 {
 align 8 arg_u8 %n[16];
 st_arg_f32 1.2f, [%n][0];
 st_arg_f32 2.4f, [%n][4];
 st_arg_f32 3.6f, [%n][8];
 st_arg_f32 6.1f, [%n][12];
 arg_u32 %count;
 st_arg_u32 4, [%count];
 arg_f32 %sum;
 call &maxofN(%sum)(%count, %n);
 ld_arg_f32 $s0, [%sum];
 }
 // ... %s0 holds the sum
};

10.6 align Field
align is an optional field indicating the alignment of the arg object in bytes.

The number n can be 1, 2, 4, 8, or 16.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

202 Functions  

Without align, the variable is naturally aligned. That is, it is allocated at an address
that is a multiple of the variable's type.

For example:
{
 arg_u32 %x; // holds one 32-bit integer value
 arg_f64 %y[3]; // holds three 64-bit float doubles
 align 8 arg_b8 %a[16]; // holds 16 bytes on an 8-byte boundary
}

align is useful when you want to pass different types to the same function.

Consider a function foo that is a simplified version of printf. foo takes in two formal
arguments. The first argument is an integer 0 or 1. That argument determines the type
of the second argument, which is either a double or a character:
function &top ()()
{
 // ...
 global_f64 %d;
 global_u8 %c[4];
 ld_global_f64 $d0, [%d];
 ld_global_u8 $s0, [%c];
 {
 align 8 arg_b8 %sk[12]; // ensures that sk starts on an 8-byte
 // boundary so that both 32-bit and
 // 64-bit stores are naturally aligned
 st_arg_u32 $s0, [%sk][8]; // stores 32 bits into the back of sk
 st_arg_u64 $d0, [%sk][0]; // stores 64 bits into the front of sk
 call &foo(%sk);
 }
 // ...
};
function &foo () (align 8 arg_b8 %z[])
{
 // ...
 ret;
};

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Functions 203

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

204 Functions  

Chapter 11

Operations Related to Functions
This chapter describes operations related to functions.

See also Chapter 10 Functions (p. 197).

11.1 call Operation
The call operation stores the address of the next operation, so execution can resume
at that point after executing a ret operation.

11.1.1 Syntax

Table 11–1 Syntax for call Operation

Opcode and Modifiers Operands

call functionName, inputArgs

call functionName, outputArg, inputArgs

call_width src, inputArgs, targets

call_width src, outputArg, inputArgs, targets

Explanation of Modifier

width: Optional: Specifies the number of consecutive work-items in flattened ID order that are guaranteed
to call the same target for indirect calls. See the Description below.

Explanation of Operands

functionName: Name of the function to call.

inputArgs: Parenthesized list of zero or more call arguments separated by commas.

outputArg: Parenthesized list of zero or one call argument.

src: A register, either s or d, depending on the memory model, that holds the address of the function to
call. See Table 2–3 (p. 20).

targets: Comma-separated list in square brackets of global identifiers or a single entry that is a signature.
Each identifier in the comma-separated list is a function, in which case the list is complete. All possible
targets are named. All functions in the list must take the same type arguments.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Operations Related to Functions 205

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.6 BRIG Syntax for Operations Related to Functions (p.
311).

11.1.2 Description

Calls must appear inside of an argument scope, even if the call has no arguments. See
4.9 Argument Scope (p. 38).

Arguments must be variables in the arg segment.

Return arguments are optional.

Arguments are pass-by-value.

In order to finalize the abstract call API, the finalizer might need to know the alignment,
type, and length of arguments that are passed at the call site. This information can be
supplied at the end of the call, either by a comma-separated list of all possible targets
or by a signature indicating the types and lengths of all arguments of the call. The
finalizer might be able to generate more efficient code if the list of targets is supplied.

width
Specifies the number of consecutive work-items in flattened ID order that are
guaranteed to call the same target for indirect calls.

The value can be width(n), width(WAVESIZE), or width(all).

Because work-items are executed in wavefronts, a single indirect call can reach
multiple targets if the register has different values in different work-items. The
optional width modifier can be used to inform the finalizer that consecutive work-
items in flattened ID order will call the same target.

If work-items specified by the width modifier do not call the same target, the
behavior is undefined.

If the width modfiier is not provided, every work-item can call a different address
(in other words, width(1) is the default).

See 2.13.1 Width Modifier (p. 22)).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

206 Operations Related to Functions  

Example

function &bar (arg_u32 %r) (arg_f32 %a);
signature &barone_t (arg_u32 %r) (arg_f32 %a);
function &foo (arg_u32 %r) (arg_f32 %a);
function &Example()(arg_u32 %arg1) {
 ldc_u64 $d1, &foo;
 cbr $c0, @lab;
 ldc_u64 $d1, &bar;
 @lab: st_arg_f32 2f, [%arg1];
 {
 arg_u32 %res;

 // call foo or bar using an explicit list
 // foo and bar are the two potential targets
 // $s1 can contain the address of foo or bar

 call_width(all) $d1 (%res)(%arg1) [&foo, &bar];
 }
 { arg_u32 %res;

 // call foo or bar using a signature

 call_width(all) $d1 (%res)(%arg1) &barone_t;
 }
};

11.2 Return (ret) Operation
The return (ret) operation returns from a function back to the caller's environment.
ret can also be used to exit a kernel.

If the program does not have a ret operation before the exit of the kernel or function's
code block, the finalizer will place the ret operation at the end of the function.

11.2.1 Syntax

Table 11–2 Syntax for ret Operation

Opcode

ret

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.6 BRIG Syntax for Operations Related to Functions (p.
311).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Operations Related to Functions 207

11.2.2 Description

Within a function, a ret operation inside of divergent control flow causes control to
transfer to the end of the function, where the work-item waits for all the other work-
items in the same wavefront. Once all work-items in a wavefront have reached the
end of the function, the function returns.

Within a kernel, a ret operation inside of divergent control flow causes control to
transfer to the end of the kernel, where the work-item waits for all the other work-
items in the same work-group. Once all work-items in a work-group have reached the
end of the kernel, the work-group finishes.

As the return is executed for a function, all values in the return arguments list are
copied to the corresponding actual arguments in the call site.

A ret operation executed in a kernel will wait for all work-items to complete and then
terminate the kernel execution.

Example

ret;

11.3 System Call (syscall) Operation
The system call (syscall) operation is used to call runtime library-supplied functions
that will be executed by a host CPU. These are typically functions that are best
implemented on a host CPU.

Each implementation and runtime library provides a list of such functions.

Some common functions might be vprintf, malloc, free, fileio, and so forth.

11.3.1 Syntax

Table 11–3 Syntax for System Call (syscall) Operation

Opcode Operands

syscall_TypeLength dest, n, src0, src1, src2

Explanation of Modifier

TypeLength: u32, u64 (see Table 4–2 (p. 46)).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

208 Operations Related to Functions  

Explanation of Operands

dest: Destination. Must be a register of size TypeLength.

n: Number, of type TypeLength, for the runtime library function to call. Must be an immediate value or
WAVESIZE.

src0, src1, src2: Sources. Each source is of type TypeLength and must be a register, immediate value, or
WAVESIZE.

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.6 BRIG Syntax for Operations Related to Functions (p.
311).

11.3.2 Description

The following steps occur:

1. The syscall operation transfers an operation number and up to three operands
of u32 or u64 data from an HSA component to a host CPU.

2. The work-item waits for the host CPU to finish.

3. The host CPU calls the associated (by operation number) runtime library routine
passing the data from each work-item.

4. A 32-bit or 64-bit result is returned and the work-item is resumed.

Developers who want to pass more data to a specific syscall operation can use
buffers in global memory. HSAIL does not support a large argument list.

Examples

syscall_u32 $s1, 3, $s2, $s3, $s4;
syscall_u64 $d1, 10, $d2, 100, $d4;

11.4 Allocate Memory (alloca) Operation
The allocate memory (alloca) operation is used by kernels or functions to allocate per-
work-item private memory at run time.

The allocated memory is freed automatically when the kernel or function exits.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Operations Related to Functions 209

11.4.1 Syntax

Table 11–4 Syntax for Allocate Memory (alloca) Operation

Opcode Operands

alloca_private_u32 dest, src

Explanation of Operands

dest: Destination. Must be a 32-bit register.

src: Source. Can be a 32-bit register, immediate value, or WAVESIZE (see 4.17 Operands (p. 50)). The value
of src is the minimum amount of space (in bytes) requested.

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.6 BRIG Syntax for Operations Related to Functions (p.
311).

11.4.2 Description

The alloca operation sets the destination dest to the private segment address of the
allocated memory. The memory can then be accessed with ld_private and
st_private operations.

Whenever a particular alignment is needed, the application might need to allocate
additional space and adjust the returned address to achieve the desired alignment.

The size is specified in bytes. However, an implementation is allowed to allocate more
than requested. For example, the request can be rounded up to ensure that a stack
pointer maintains a certain alignment.

The behavior is undefined if not enough private memory is available to satisfy the
requested size.

Example

alloca_private $s1, 24;

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

210 Operations Related to Functions  

Chapter 12

Special Operations
This chapter describes special operations used to access predefined values.

12.1 Syntax
The table below shows the syntax for the special operations in alphabetical order.

Table 12–1 Syntax for Special Operations

Opcodes and Modifier Operands

cleardetectexcept_u32 exceptionsNumber

clock_u64 dest

cuid_u32 dest

currentworkgroupsize_u32 dest, dimNumber

debugtrap_u32 src

dim_u32 dest

dispatchid_u64 dest

dispatchptr_global_uLength dest

getdetectexcept_u32 dest

gridgroups_u32 dest, dimNumber

gridsize_u32 dest, dimNumber

laneid_u32 dest

maxcuid_u32 dest

maxwaveid_u32 dest

nop

nullptr_segment_uLength dest

qid_u32 dest

qptr_global_uLength dest

setdetectexcept_u32 exceptionsNumber

waveid_u32 dest

workgroupid_u32 dest, dimNumber

workgroupsize_u32 dest, dimNumber

workitemabsid_u32 dest, dimNumber

workitemflatabsid_u32 dest

workitemflatid_u32 dest

workitemid_u32 dest, dimNumber

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Special Operations 211

Explanation of Modifiers

segment: Optional segment name.

Length: 32, 64. Must match the address size for the specified segment (see Table 2–3 (p. 20)).

Explanation of Operands

dest: Destination. Must be an s register, except for clock and dispatchid, which require a d register. For
nullptr, must be a register with a size that matches the address size of the segment address. See Table
2–3 (p. 20).

dimNumber: Source that selects the dimension (X, Y, or Z). 0, 1, and 2 are used for X, Y, and Z, respectively.
Must be an immediate value of data type u32.

exceptionsNumber: Source that specifies the set of exceptions. bit:0=INVALID_OPERATION, bit:
1=DIVIDE_BY_ZERO, bit:2=OVERFLOW, bit:3=UNDERFLOW, bit:4=INEXACT; all other bits are ignored. Must
be an immediate value of data type u32.

Exceptions (see Chapter 13 Exceptions (p. 219))

No exceptions are allowed.

For BRIG syntax, see 19.10.7 BRIG Syntax for Special Operations (p. 311).

12.2 Description

cleardetectexcept
Clears DETECT exception flags specified in exceptionsNumber for the work-group
containing the work-item. The result is undefined if used inside divergent control
flow, and might lead to deadlock. See 12.3 Additional Information on DETECT
Exception Operations (p. 216).

clock
Stores the current value of a 64-bit unsigned cycle counter in a d register specified
by the destination dest. The same clock is required to be used by all compute units
of a single HSA component, but is not required to be the same clock used by other
HSA components or the host CPU. The clock must count at a fixed frequency. The
HSA runtime can be queried to determine the frequency of the clock for each HSA
component, and to convert the clock value of a specific HSA component into the
global time domain.

cuid
Returns a 32-bit unsigned number identifying the compute unit on which the work-
item is currently executing and stores the result in the destination dest a number
between 0 and maxcuid. cuid is helpful in determining the load balance of a kernel.
Implementations are allowed to move in-flight computations between compute
units, so the value returned can be different each time cuid is executed.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

212 Special Operations  

currentworkgroupsize
Accesses the work-group size that the currently executing work-item belongs to
for the src dimension (see 2.2 Work-Groups (p. 7)) and stores the result in the
destination dest.

Because the grid is not required to be a multiple of the work-group size, there can
be partial work-groups. The currentworkgroupsize operation returns the work-
group size that the current work-item belongs to. The value returned by this
operation will only be different from that returned by the workgroupsize operation
if the current work-item belongs to a partial work-group.

If it is known that the kernel is always dispatched without partial work-groups, then
it might be more efficient to use the workgroupsize operation.

If the kernel was dispatched with fewer dimensions than src, then
currentworkgroupsize returns 1 for the unused dimensions.

debugtrap
Halts the current wavefront and transfers control to the debugger. The source
src is passed to the debugger and can be used to identify the trap.

dim
Returns the number of dimensions in use by this dispatch and stores the result in
the destination dest. See 2.1 Overview of Grids, Work-Groups, and Work-Items (p.
5).

dispatchid
Returns a 64-bit dispatch identifier (dispatch ID) that is unique for the queue used
for this dispatch and stores the result in the destination dest.

The combination of the dispatch ID and the queue ID is globally unique. Debuggers
might find this useful.

dispatchptr
Sets the destination dest to the global segment address of the AQL dispatch packet
that invoked this kernel execution. The format of the dispatch packet is defined in
the HSA System Architecture Specification.

getdetectexcept
Returns the current value of DETECT exception flags, which is a summarization
for all work-items in the work-group containing the work-item, and stores the
result in the destination dest. The bits in the result indicate if that exception has
been generated in any work-item within the work-group containing the current
work-item, as modified by any preceding cleardetectexcept or
cleardetectexcept operations executed by any work-item in the work-group
containing the current work-item. The bits correspond to the exceptions as follows:
bit 0 is INVALID_OPERATION, bit 1 is DIVIDE_BY_ZERO, bit 2 is OVERFLOW, bit 3 is
UNDERFLOW, bit 4 is INEXACT, and other bits are ignored. The result is undefined
if used inside divergent control flow, and might lead to deadlock. See 12.3
Additional Information on DETECT Exception Operations (p. 216).

gridgroups
Returns the upper bound for work-group identifiers (IDs) (that is, the number of
work-groups) within the grid and stores the result in the destination dest.

If the grid was launched with fewer dimensions than the work-item absolute ID,
then gridgroups returns 1 for the unused dimensions.

gridgroups is always equal to gridsize divided by workgroupsize rounded up to
the nearest integer.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Special Operations 213

gridsize
Returns the upper bound for work-item absolute identifiers (IDs) within the grid
and stores the result in the destination dest.

If the grid was launched with fewer dimensions than the work-item absolute ID,
then gridsize returns 1 for the unused dimensions.

laneid
Returns the identifier (ID) of the work-item's lane within the wavefront, a number
between 0 and WAVESIZE − 1, and stores the result in the destination dest.

The compile-time macro WAVESIZE can be used to generate code that depends on
the wavefront size.

maxcuid
Returns the number of compute units −1 for this HSA component and stores the
result in the destination dest. For example, if an HSA component has four compute
units, maxcuid will be 3.

maxwaveid
Returns the number of wavefronts −1 that can run at the same time on a compute
unit and stores the result in the destination dest. All compute units of an HSA
component must support the same value for maxwaveid. For example, if a
maximum of four wavefronts can execute at the same time on a compute unit,
maxwaveid will be 3.

nop
A NOP (no operation). Used to leave space in an HSAIL program.

nullptr
Sets the destination dest to a value that is not a legal address within the segment. If
segment is omitted, dest is set to the value of the null pointer value used by the host
CPUs for flat addressing.

The value for each segment, and for flat addressing, is dependent on the host
operating system. All agents must use the same values as the host CPUs.

The runtime will provide API calls so that agents can determine the value returned
by nullptr for each segment.

qid
Returns a 32-bit queue identifier (queue ID) that is unique for the currently created
queues within a process and stores the result in the destination dest. Queue IDs
may be reused during the lifetime of the process, and are not guaranteed to be
unique between processes.

The combination of the queue ID and the dispatch ID is globally unique. Debuggers
might find this useful.

qptr
Sets the destination dest to to the global segment address of the AQL queue object
on which the dispatch packet that invoked this kernel execution is queued. The
format of the queue object is defined in the HSA System Architecture Specification.

setdetectexcept
Sets DETECT exception flags specified in exceptionsNumber for the work-group
containing the current work-item. The result is undefined if used inside divergent
control flow, and might lead to deadlock. See 12.3 Additional Information on
DETECT Exception Operations (p. 216).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

214 Special Operations  

waveid
Returns an identifier (ID) for the wavefront on this compute unit, a number
between 0 and maxwaveid, and stores the result in the destination dest.

For example, if a maximum of four wavefronts can execute at the same time on a
compute unit, the possible waveid values will be 0, 1, 2, and 3.

The value is unique across all currently executing wavefronts on the same compute
unit. The number will be reused when the wavefront is finished and a new
wavefront starts.

Programs might use this value to address non-persistent global storage.

workgroupid
Accesses the work-group identifier (ID) within the grid.

This operation computes the three-dimensional ID of the work-group, selects one
dimension, and stores the result in the destination dest.

If the grid was launched with fewer than three dimensions, workgroupid returns
0 for the unused dimensions.

workgroupsize
Accesses the work-group size specified when the kernel was dispatched for the
src dimension (see 2.2 Work-Groups (p. 7)) and stores the result in the destination
dest.

Because the grid is not required to be a multiple of the work-group size, there can
be partial work-groups. If there can be partial work-groups, the
currentworkgroupsize operation should be used to get the work-group size for
the work-group that the currently executing work-item belongs to.

If it is known that the kernel is always dispatched without partial work-groups, then
currentworkgroupsize and workgroupsize will always be the same, and it might
be more efficient to use workgroupsize.

If the kernel was dispatched with fewer dimensions than src, then
workgroupsize returns 1 for the unused dimensions.

workitemabsid
Accesses the work-item absolute identifier (ID) within the entire grid and stores the
result in the destination dest.

If the work-group was launched with fewer dimensions than src, workitemabsid
returns 0 for the unused dimensions.

workitemflatabsid
Accesses the flattened form of the work-item absolute identifier (ID) within the
entire grid and stores the result in the destination dest.

workitemflatid
Accesses the flattened form of the work-item identifier (ID) within the work-group
and stores the result in the destination dest.

workitemid
Accesses the work-item identifier (ID) within the work-group and stores the result
in the destination dest.

If the work-group was launched with fewer dimensions than src, workitemid
returns 0 for the unused dimensions.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Special Operations 215

12.3 Additional Information on DETECT Exception
Operations

DETECT exception processing operates on the five exceptions specified in 13.2
Hardware Exceptions (p. 219)).

DETECT exception processing is performed independently for each work-group.
Each work-group conceptually maintains a 5-bit exception_detected field which is
initialized to 0 before any wavefront in the work-group starts executing. This field can
be implemented in group memory and so might reduce the amount of memory
available for group segment variables. However, an implementation is free to
implement the semantics implied by the cleardetectexcept, setdetectexcept, and
getdetectexcept operations in any way it chooses, including by using dedicated
hardware.

If any of the five exceptions occurs in any work-item of the work-group, the bit
corresponding to the exception is conceptually set in the exception_detected field.

The cleardetectexcept, setdetectexcept, and getdetectexcept operations
conceptually operate on the exception_detected field, and their execution must be
work-group uniform. If they are used inside of divergent control flow, the result is
undefined, and might lead to deadlock. (See 2.13 Divergent Control Flow (p. 21).) These
operations can be used in a loop, provided the loop introduces no divergent control
flow. This requires that all work-items in the work-group execute the loop the same
number of iterations.

The work-group exception_detected field is not implicitly saved when the work-
items of the work-group complete execution. If the user wants to save the value, then
explicit HSAIL code must be used. For example, the kernel might perform a
getdetectexcept operation at the end and atomically or the result into a global
memory location specified by a kernel argument. This will accumulate the results
from all work-groups of a kernel dispatch.

When a kernel is finalized, the set of exceptions that are enabled for DETECT can be
specified. In addition, they can be specified in the kernel by the
enabledetectexceptions control directive. The exceptions enabled for DETECT is
the union of both these sources.

If any function that the kernel calls, either directly or indirectly, has an
enabledetectexceptions control directive that includes exceptions not specified by
either the kernel's enabledetectexceptions control directive or the finalizer option,
then it is undefined if those exceptions will be enabled for DETECT.

An implementation is only required to correctly report DETECT exceptions that were
enabled when the kernel was finalized. It is implementation-defined if exceptions not
enabled for DETECT when the kernel was finalized are correctly reported.

On some implementations, if one or more exceptions are enabled for DETECT, the
code produced might have lower performance than if no exceptions were enabled for
DETECT. However, an implementation should attempt to make the performance near
that of a kernel finalized with no exceptions enabled for DETECT.

If any exceptions are enabled for the DETECT policy, there are some restrictions on
the optimizations that are permitted by the finalizer. In general, the intent is that
effective optimization can still be performed according to the optimization level
specified to the finalizer (see 18.9 Exceptions (p. 247)).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

216 Special Operations  

Examples

clock_u64 $d6; // return the current time
debugtrap_u32 $s1; // halt and transfer control to debugger
cuid_u32 $s7; // access the compute unit id within the
 // HSA component
maxcuid_u32 $s6; // access number of compute units on the
 // HSA component
waveid_u32 $s3; // access the wavefront ID within the
 // HSA component
maxwaveid_u32 $s4; // access the maximum number of waves
 // that can be executing at the same
 // time by the HSA component
dispatchid_u64 $d0; // access the dispatch ID
dispatchptr_global_u64 $d0; // access the address of the
 // AQL dispatch packet
laneid_u32 $s1; // access the lane ID
qid_u32 $s0; // access the queue ID
cleardetectexcept_u32 $s0;
getdetectexcept_u32 $s1;
setdetectexcept_u32 $s2;
nop; // no operation
nullptr_group_u32 $s0; // null pointer value for group segment
nullptr_global_u64 $d1; // null pointer value for global segment
gridsize_u32 $s2, 2; // access the number of work-items in the
 // grid Z dimension
gridgroups_u32 $s2, 2; // access the number of work-groups in the
 // grid Z dimension
workgroupsize_u32 $s1, 0; // access the number of work-items in the
 // non-partial work-groups in the X dimension
currentworkgroupsize_u32 $s1, 0; // access the number of work-items in
 // the current work-group in the X
 // dimension, which might be partial
workitemabsid_u32 $s1, 0; // access the work-item absolute ID in the
 // X dimension
workgroupid_u32 $s1, 0; // access the work-group ID in the X dimension
workgroupid_u32 $s1, 1; // access the work-group ID in the Y dimension
workgroupid_u32 $s1, 2; // access the work-group ID in the Z dimension
workitemid_u32 $s1, 0; // access the work-item ID in the X dimension
workitemid_u32 $s1, 1; // access the work-item ID in the Y dimension
workitemid_u32 $s1, 2; // access the work-item ID in the Z dimension

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Special Operations 217

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

218 Special Operations  

Chapter 13

Exceptions
This chapter describes HSA exception processing.

13.1 Kinds of Exceptions
Three kinds of exceptions are supported:

• Hardware-detected exceptions such as divide by zero.

See 13.2 Hardware Exceptions (p. 219).

• Software-triggered exceptions corresponding to the higher-level catch and
throw operations.

Software exceptions can be generated by syscall, but HSAIL provides no
special operations for handling software exceptions.

• Debug-related exceptions generated by debugtrap.

Debug exceptions normally invoke the debugger. If no debugger is present, they
are handled as software exceptions.

13.2 Hardware Exceptions
HSAIL requires the hardware to generate certain exceptions, and provides a
mechanism to control these exceptions by means of hardware exception policies (see
13.3 Hardware Exception Policies (p. 221)). These exceptions include the five floating-
point exceptions specified in IEEE/ANSI Standard 754-2008. HSAIL also allows, but does
not require, an implementation to generate a divide by zero exception if integer
division or remainder with a divisor of zero is performed.

In addition, HSAIL allows, but does not require, an implementation to generate other
exceptions, such as invalid address and memory exception. However, HSAIL does not
provide support to control these exceptions by means of the HSAIL exception policies.
It is therefore implementation-defined how they are handled.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Exceptions 219

The exceptions supported by the HSAIL exception policies are:

• Overflow

The floating-point exponent of a value is too large to be represented.

An operation that generates the overflow exception must also generate the
inexact exception.

• Underflow

A non-zero floating-point value is so small that it cannot be represented without
an extraordinary loss of accuracy. The value can be represented only as zero or
a subnormal number.

An operation that generates the underflow exception must also generate the
inexact exception if the result is zero or a subnormal value that is not the exact
value.

• Division by zero

A finite non-zero floating-point value is divided by zero.

It is implementation defined if integer div or rem operations with a divisor of
zero will generate a divide by zero exception.

• Invalid operation

Operations are performed on values for which the results are not defined. These
are:

• Operations on signaling NaN (sNan) floating-point values.

• Multiplication: mul(0.0, infinity) or mul(infinity, 0.0).

• Fused multiply add: fma(0.0, infinity, c) or fma(infinity, 0.0, c) unless c is a
quiet NaN, in which case it is implementation-defined if an exception is
generated.

• Addition, subtraction, or fused multiply add: magnitude subtraction of
infinities, such as: add(positive infinity, negative infinity), sub(positive
infinity, positive infinity).

• Division: div(0.0, 0.0) or div(infinity, infinity).

• Square root: sqrt(negative).

• Conversion: A cvt with a floating-point source type, an integer destination
type, and a nonsaturating rounding mode, when the source value is a NaN,
infinity, or the rounded value, after any flush to zero, cannot be
represented precisely in the integer type of the destination.

• Inexact

A computed floating-point value cannot be represented exactly, so a rounding
error is introduced.

This exception is very common.

An operation might generate both an underflow and inexact exception. An
operation that generates an overflow exception will also generate an inexact
exception.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

220 Exceptions  

13.3 Hardware Exception Policies
HSA supports DETECT and BREAK policies for each of the five exceptions specified in
13.2 Hardware Exceptions (p. 219):

• DETECT

A compute unit must maintain a status bit for each of the five supported
hardware exceptions for each work-group it is executing. All status bits are set
to 0 at the start of a work-group. If an exception is generated in any work-item,
the corresponding status bit will be set for its work-group. The
cleardetectexcept, getdetectexcept, and setdetectexcept operations can
be used to read and write the per work-group status bits.

The DETECT policy is independent of the BREAK policy.

In order that DETECT exceptions are correctly reported, it is necessary to specify
them when the finalizer is invoked, or in an enabledetectexceptions control
directive in the kernel. It is undefined if enabled DETECT exceptions are
correctly updated if all external functions called directly or indirectly by the
kernel are not also finalized with the exceptions enabled for the DETECT policy.

Specifying DETECT exceptions to the finalizer might result in the code produced
having lower performance. However, an implementation should attempt to
make the performance reduction minimal.

If any exceptions are enabled for the DETECT policy, there are some restrictions
on the optimizations that are permitted by the finalizer. In general, the intent is
that effective optimization can still be performed according to the optimization
level specified to the finalizer (see 18.9 Exceptions (p. 247)).

See 12.3 Additional Information on DETECT Exception Operations (p. 216).

• BREAK

When an exception occurs and the BREAK policy is enabled for that exception,
all compute units of the HSA component must stop execution of the HSAIL
instruction stream for that kernel dispatch. It is required that if an instruction
generates an exception that is not enabled for the BREAK exception policy, then
it will not cause execution of the kernel dispatch to halt. Execution is halted at a
machine instruction boundary, and this is not required to be at an HSAIL
operation boundary. The machine instruction each wavefront is executing
when the compute unit is halted is termed the halted machine instruction.

The halted instruction for all work-items that executed a machine instruction
that generated an exception that is enabled for the BREAK policy before the
compute unit stopped execution must be the machine instruction that generated
the exception. These are termed the excepting work-items. The machine
instruction that generated the exception is termed the excepting machine
instruction. The wavefronts containing the excepting work-items are termed the
excepting wavefronts.

The other wavefronts that are currently executing the kernel dispatch, but do
not contain an excepting work-item, are termed non-excepting wavefronts. The
work-items they contain are termed non-excepting work-items.

For each of the excepting work-items, it is required that the machine state must
be as if the excepting machine instruction had never executed. This includes
updating of machine registers, writing to memory, setting the DETECT exception
bits, and updating any other machine state. It is required to indicate the set of

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Exceptions 221

excepting work-items, together with the set of exceptions each generated. A
single excepting work-item may generate more than one exception. All
exceptions enabled for the BREAK policy must be included. It is allowed, but not
required, to include other exceptions that the excepting instruction generated.

All non-excepting work-items, whether in an excepting wavefront or non-
excepting wavefront, that are enabled are required to behave as if either: they
had not executed the halted machine instruction and therefore not modified
machine state, including setting any DETECT exception status bits; or they had
completed execution of the halted machine instruction and modified the
machine state including any DETECT exception status bits. They are not allowed
to only partially update the machine state.

For both excepting and non-excepting wavefronts, it is required to provide an
indication of which enabled work-items in each wavefront have completed
execution of the halted machine instruction, and which are as if they had not
executed the halted machine instruction. It is allowed for a wavefront to have
some enabled work-items that have completed, and some that have not
completed, the halted machine instruction.

It is allowed for execution of the non-excepting wavefronts to proceed some
number of machine instructions after an exception enabled for the BREAK
policy has been generated by some other wavefront. Indeed, this execution
might result in additional exceptions enabled for the BREAK policy being
generated, and so result in additional excepting wavefronts. However, an
implementation should attempt to keep the number of machine instructions
executed by other wavefronts to a minimum in order to improve the precision
of exception information presented by debuggers.

It is required that the machine state of an excepting work-item can be modified.
This must include updating of machine registers, writing to memory, setting the
DETECT exception bits, updating any other machine state, and changing the
work-item to indicate that it is as if the excepting machine instruction had
completed execution. It is required that execution can be resumed, which will
result in all halted wavefronts continuing execution. For each wavefront, it is
required that all enabled work-items that are as if the halted machine instruction
had not been completed, will first complete execution of the halted machine
instruction, before all enabled work-items in the same wavefront continue
execution with the next machine instruction.

When the finalizer is invoked, or in an enablebreakexceptions control directive
in the kernel, it must be specified which exceptions can be enabled for BREAK
when it is dispatched. It is undefined if an exception enabled for BREAK when a
kernel was finalized will correctly halt execution if it occurs, unless all external
functions called directly or indirectly by the kernel are also finalized with that
exception enabled for BREAK.

Specifying one or more exceptions might result in code that executes with lower
performance.

If any exceptions are enabled for the BREAK policy, there are some restrictions
on the optimizations that are permitted by the finalizer. In general, the intent is
that effective optimization can still be performed according to the optimization
level specified to the finalizer (see 18.9 Exceptions (p. 247)).

If an exception is generated that is not enabled for the BREAK policy, or if execution
is resumed after having been halted due to generation of either the same or different
exception that is enabled for the BREAK policy, then execution continues after
updating of the DETECT status bit if the DETECT policy is enabled for that exception.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

222 Exceptions  

The operation generating the exception completes and produces the result specified
for that exceptional case. Generating an exception does not affect execution unless the
BREAK policy is enabled for that exception, and execution is not resumed, except for
the side effect of updating the corresponding DETECT bit if the DETECT policy is
enabled for that exception, or any side effects resulting from halting execution due to
an exception enabled for the BREAK policy.

No HSAIL operations can be used to change which exceptions are enabled for the
DETECT or BREAK policy: that can only be achieved at finalize time through the
finalizer detect exceptions option, or an enabledetectexceptions control directive in
the kernel.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Exceptions 223

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

224 Exceptions  

Chapter 14

Directives
This chapter describes the directives.

14.1 extension Directive
The extension directive enables additional opcodes that can be used in the
compilation unit. It must appear after the version directive but before the first HSAIL
declaration or definition. This allows a finalizer to identify all extensions by only
inspecting the directives at the start of a compilation unit: it does not need to scan the
entire compilation unit.

An extension directive applies to all kernels and functions in the compilation unit up
to the next version directive or end of input.

The syntax is:
extension string

The string is the name of the extension.

For example, if a finalizer from a vendor named foo was to support an extension
named bar, an application could enable it using code like this:
extension "foo:bar";

The string "CORE" specifies that no extensions are allowed:

extension "CORE";

If the "CORE" extension directive is present, the only other extension directives
allowed in the same compilation unit are other "CORE" directives. Otherwise, multiple
non-"CORE" extension directives are allowed in a compilation unit: a finalizer must
enable all opcodes for all extension directives that specify the vendor of the finalizer
for the compilation unit.

14.1.1 How to Set Up Finalizer Extensions

HSAIL opcodes are 32 bits in the binary format. Each extension uses the upper 16 bits
as an identifier for the extension and the lower 16 bits to identify the specific opcode.

For example, assume that a particular finalizer named xyzhas implemented an
extension called newext. The finalizer could choose to number this extension target as
extension 0x23, with a max3_f32 operation (with number 0x00230001). The operation
could return the maximum value of three floating-point inputs.

The code would be:

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Directives 225

version 1:0:$full:$large;
extension "xyz:newext";
kernel &max3Vector(kernarg_u32 %A,
 kernarg_u32 %B,
 kernarg_u32 %C,
 kernarg_u32 %D
)
{
 workitemabsid $s0, 0; // s0 is the absolute ID
 mul_u32 $s0, $s0, 4; // 4* absolute ID (into bytes)

 ld_kernarg_u32 $s4, [%A];
 add_u32 $s1, $s0, $s4;
 ld_global_f32 $s10, [$s1];

 ld_kernarg_u32 $s4, [%B];
 add_u32 $s1, $s0, $s4;
 ld_global_f32 $s11, [$s1];

 ld_kernarg_u32 $s4, [%C];
 add_u32 $s1, $s0, $s4;
 ld_global_f32 $s12, [$s1];

// The finalizer supports new opcode:
 newext_max3_f32 $s11, $s10, $s11, $s12;

 ld_kernarg_u32 $s4, [%D];
 add_u32 $s10, $s0, $s4;
 st_global_f32 $s10, [$s10];
 ret;
};

If the finalizer does not support the extension, the program should fail to finalize at
run time.

14.2 Block Section Directives for Debugging and
Runtime Information

HSAIL allows a compiler to embed information for either a debugger or a runtime
library inside an HSAIL program. The embedded information is contained in a block
section containing directives.

Blocks can appear in either of these places:

• Inside a function or kernel. (These blocks apply to the function or kernel.)

• At the top level. (These blocks apply to all following code.)

More than one block section can appear in a program.

14.2.1 Syntax for a Block Section

Syntax is:
block string
series of one or more blockstring or blocknumeric directives;
endblock;

An example is:

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

226 Directives  

block "rti"
blockstring "meta info about this function";
endblock;

The string on the block directive can be either "debug" (for debugger information) or
"rti" (for runtime information).

The blockstring directive contains a string in quotes specifying the information to
be passed.

The blocknumeric directive has the following format:

• blocknumeric_b8 — Comma-separated list of byte values

• blocknumeric_b32 — Comma-separated list of integer values

• blocknumeric_b64 — Comma-separated list of integer values

The endblock directive ends the block.

Because the block directive starts a block of statements, it does not have a trailing
semicolon, but the other statements in the block do.

Blocks labeled with "debug" are placed in the BRIG .debug section. See 19.9 .debug
Section (p. 301).

Blocks labeled with "rti" are placed in the BRIG .directive section. See
19.6 .directive Section (p. 270).

For information about BRIG syntax, see 19.5 Block Sections in BRIG (p. 267).

14.2.2 Example of a Block Section for Debug Data

This example shows a block section for debug data:
block "debug"
blocknumeric_b8 255, 23, 10, 23;
blocknumeric_b32 1255, 0x323, 10, 23;
blocknumeric_b64 0x123456781, 0x323, 10, 23;
blockstring "this is a string";
endblock;

14.2.3 Using a Block Section for Runtime Information

Examples of why a compiler might use a block section include:

• To let the runtime know that it needs to treat some argument in a special way.

• To hold reflection information.

• To hold information about configuration control.

14.2.4 Example of a Block Section for Runtime Data

Example:

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Directives 227

version 1:0:$full:$large;
global_u32 &a = 0;
block "rti"
blockstring "meta info global";
endblock;

static global_u32 &c;
function &foo () (align 8 arg_b8 %z[12])
{
 block "rti"
 blockstring "meta info about this function";
 endblock;
 ret;
};

kernel &square (kernarg_u32 %___square__a)
{
 block "rti"
 blockstring "meta info about this kernel";
 endblock;
 ret;
};

14.3 file Directive
The file directive is used to map numbers to character strings. The numbers can then
be used in loc statements to indicate that code following the loc statement originated
in the file whose name is in the character string.

The syntax is:
file number string

number is an index into a table for use by later loc statements. number must be a positive
integer that is unique to all other file directives.

string is a file name surrounded by quotes. An empty file name also requires quotes.

See the following example:
file 1 "this is a file";

See also 14.4 loc Directive (p. 228).

14.4 loc Directive
Use the loc directive to specify the line number in the source file for the HSAIL code.

The syntax is:
loc filenum linenum [column] [options]

filenum is the number on a prior file directive.

linenum is the line number within that file.

column is an optional column within the line.

options are debug options. Currently, options must be 0; later releases of HSAIL will
support additional options.

For example:
loc 1 20 0; // file 1 line 20

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

228 Directives  

See also 14.3 file Directive (p. 228).

14.5 pragma Directive
The pragma directive can be used to pass a string of information to the finalizer.

The syntax is:
pragma string

The pragma directive can appear anywhere in the HSAIL code.

If the pragma applies to a kernel or function, then it must be placed in the kernel or
function scope, and only applies to that kernel or function. This allows the finalizer to
locate all pragmas for a kernel or function without having to read all file scope
directives. It also allows an HAIL linker to process functions independently, because
no pragmas outside the function can alter its behavior.

The finalizer implementation defines rules for what portion of the kernel or function
the pragma applies to and what happens if the same pragma appears multiple times.

The finalizer implementation determines the interpretation of pragma strings.

You cannot use this directive to change the semantics of the HSAIL virtual machine.

14.6 Control Directives for Low-Level Performance
Tuning

HSAIL provides control directives to allow implementations to pass information to the
finalizer. These directives are used for low-level performance tuning. See Table 14–1
(p. 229).

Table 14–1 Control Directives for Low-Level Performance Tuning

Directive Arguments

enablebreakexceptions exceptionsNumber

enabledetectexceptions exceptionsNumber

maxdynamicgroupsize size

maxflatgridsize count

maxflatworkgroupsize count

requestedworkgroupspercu nc

requireddim nd

requiredgridsize nx, ny, nz

requiredworkgroupsize nx, ny, nz

requirenopartialworkgroups

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Directives 229

Explanation of Operands

exceptionsNumber: Source that specifies the set of exceptions. bit:0=INVALID_OPERATION, bit:
1=DIVIDE_BY_ZERO, bit:2=OVERFLOW, bit:3=UNDERFLOW, bit:4=INEXACT; all other bits are ignored. Must
be an immediate value of data type u32.

size: The number of bytes. Treated as data type u32. Must be an immediate value.

count: The number of work-items. Treated as data type u32. Must be an immediate value greater than 0,
or WAVESIZE.

nc: The number of work-groups. Treated as data type u32. Must be an immediate value greater than 0.

nd: The number of dimensions. Treated as data type u32. Must be an immediate value with the value 1, 2
or 3.

nx, ny, nz: The work-group range. Treated as data type u32. Must be an immediate value greater than 0,
or WAVESIZE.

See also 19.2.6 BrigControlDirective (p. 253).

The control directives must appear in the code block of a kernel, function, or argument
scope, and only apply to that kernel or function, and possibly all the functions it calls
directly or indirectly. This allows the finalizer to locate all control directives for a
kernel or function without having to read all file scope directives. It also allows an HAIL
linker to process functions independently, because no control directives outside the
function can alter its behavior.

The rules for what portion of the kernel or function the control directive applies to,
and what happens if the same control directive appears multiple times, or in functions
called by the code block, are specified by each control directive.

If the runtime library also supports arguments for the limits specified by the
directives, the directives take precedence over any constraints passed to the finalizer
by the runtime.

enablebreakexceptions
Specifies the set of exceptions that must be enabled for the BREAK policy (see 13.3
Hardware Exception Policies (p. 221)). exceptionsNumber must be an immediate
value of data type u32. The bits correspond to the exceptions as follows: bit 0 is
INVALID_OPERATION, bit 1 is DIVIDE_BY_ZERO, bit 2 is OVERFLOW, bit 3 is
UNDERFLOW, bit 4 is INEXACT, and other bits are ignored. It can be placed in either
a kernel or a function code block.

The exceptions enabled for the BREAK policy is the union of the exceptions
specified by all the enablebreakexceptions control directives in the kernel code
block and the enable break exceptions argument specified when the finalizer is
invoked. The setting applies to the whole kernel and all functions it calls in the same
compilation unit.

If the functions called directly or indirectly by the kernel contain
enablebreakexceptions control directives, then it is undefined if exceptions
specified in them are enabled if they are not also enabled by the kernel or finalizer
option.

It is undefined if enabled BREAK exceptions are correctly updated in functions
called directly or indirectly by the kernel in other compilation units, unless they
contain enablebreakexceptions control directives or the finalizer was invoked
specifying them in the enable break exceptions argument.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

230 Directives  

enabledetectexceptions
Specifies the set of exceptions that must be enabled for the DETECT policy (see
13.3 Hardware Exception Policies (p. 221)). exceptionsNumber must be an
immediate value of data type u32. The bits correspond to the exceptions as follows:
bit 0 is INVALID_OPERATION, bit 1 is DIVIDE_BY_ZERO, bit 2 is OVERFLOW, bit 3 is
UNDERFLOW, bit 4 is INEXACT, and other bits are ignored. It can be placed in either
a kernel or a function code block.

The exceptions enabled for the DETECT policy is the union of the exceptions
specified by all the enabledetectexceptions control directives in the kernel code
block and the enable detect exceptions argument specified when the finalizer is
invoked. The setting applies to the whole kernel and all functions it calls in the same
compilation unit.

If the functions called directly or indirectly by the kernel contain
enabledetectexceptions control directives, then it is undefined if exceptions
specified in them are enabled if they are not also enabled by the kernel or finalizer
option.

It is undefined if enabled DETECT exceptions are correctly updated in functions
called directly or indirectly by the kernel in other compilation units, unless they
contain enabledetectexceptions control directives or the finalizer was invoked
specifying them in the enable detect exceptions argument.

maxdynamicgroupsize
Specifies the maximum number of bytes of dynamic group memory (see 4.24
Dynamic Group Memory Allocation (p. 61)) that will be allocated for a dispatch of
the kernel. size must be an immediate value of data type u32 with a value greater
than or equal to 0. It can be placed in either a kernel or a function code block. This
is only a hint and can be ignored by the finalizer.

This value can be used by the finalizer to determine the maximum number of bytes
of group memory used by each work-group. The finalizer can add this value to the
group memory required for all group segment variables used by the kernel and all
functions it calls and to the group memory used to implement other HSAIL features
such as fbarriers and the detect exception operations. This can allow the finalizer
to determine the expected number of work-groups that can be executed by a
compute unit and allow more resources to be allocated to the work-items if it is
known that fewer work-groups can be executed due to group memory limitations.
This can also allow the finalizer to determine that there is free group memory that
it can use for other purposes such as spilling.

The control directive applies to the whole kernel and all functions it calls. If multiple
control directives are present in the kernel or the functions it calls, they must all
have the same value.

If the value for maximum dynamic group size is specified when the finalizer is
invoked, it must match the value given in any maxdynamicgroupsize control
directive.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Directives 231

maxflatgridsize
Specifies the maximum maximum number of work-items that will be in the grid
when the kernel is dispatched. count must be an immediate value of data type
u32 with a value greater than 0, or WAVESIZE. It can be placed in either a kernel or
a function code block. This is only a hint and can be ignored by the finalizer.

It is undefined if the kernel is dispatched with a grid range when the product of the
X, Y, and Z elements of the grid range is greater than this value. A finalizer might
be able to generate better code for the workitemabsid, workitemflatid, and
workitemflatabsid operations if the absolute grid size is less than 224−1, because
faster mul24 operations can be used. The control directive applies to the whole
kernel and all functions it calls. If multiple control directives are present in the
kernel or the functions it calls, they must all have the same values.

If the value for maximum absolute grid size is specified when the finalizer is
invoked, the value must be less than or equal to the corresponding value given in
any maxflatgridsize control directive, and will override the control directive
value. The value specified must also be greater than or equal to the product of the
values specified by requiredgridsize.

maxflatworkgroupsize
Specifies the maximum number of work-items that will be in the work-group when
the kernel is dispatched. count must be an immediate value of data type u32 with
a value greater than 0, or WAVESIZE. It can be placed in either a kernel or a function
code block. This is only a hint and can be ignored by the finalizer.

It is undefined if the kernel is dispatched when the product of the X, Y, and Z
elements of the work-group range is greater than this value. A finalizer might be
able to generate better code for barriers if it knows that the work-group size is less
than or equal to the wavefront size. A finalizer might be able to generate better
code for the workitemflatid operation if the total work-group size is less than
224−1, because faster mul24 operations can be used. The control directive applies to
the whole kernel and all functions it calls. If multiple control directives are present
in the kernel or the functions it calls, they must all have the same values.

If the value for maximum absolute work-group size is specified when the finalizer
is invoked, the value must be less than or equal to the corresponding value given
by any maxflatgroupsize control directive, and will override the control directive
value. The value specified must also be greater than or equal to the product of the
values specified by requiredworkgroupsize.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

232 Directives  

requestedworkgroupspercu
Specifies the desired number of work-groups that can execute on a single compute
unit. nc must be an immediate value of data type u32 with a value greater than 0. It
can be placed in either a kernel or a function code block. The finalizer should
attempt to generate code that will meet this request. It can be placed in either a
kernel or a function code block. This is only a hint and can be ignored by the
finalizer.

This can be used by the finalizer to determine the number of resources that should
be allocated to a single work-group and work-item. For example, a low value might
allow more resources to be allocated, resulting in higher per work-item
performance, as it is known there will never be more than the specified number
of work-groups actually executing on the compute unit. Conversely, a high value
might allocate fewer resources, resulting in lower per work-item performance,
which is offset by the fact that it allows more work-groups to actually execute on
the compute unit.

The control directive applies to the whole kernel and all functions it calls. If multiple
control directives are present in the kernel or the functions it calls, they must all
have the same value.

If the value for requested work-groups per compute unit is specified when the
finalizer is invoked, the value must match the value given in any
requestedworkgroupspercu control directive.

requireddim
Specifies the number of dimensions that will be used when the kernel is dispatched.
nd must be an immediate value of data type u32 with the value 1, 2, or 3. It can be
placed in either a kernel or a function code block. This is only a hint and can be
ignored by the finalizer.

It is undefined if the kernel is dispatched with a dimensions value that does not
match the required dimension.

With the use of this operation, a finalizer might be able to generate better code for
the workitemid, workitemabsid, workitemflatid, and workitemflatabsid
operations, because the terms for dimensions above the value specified can be
treated as 1.

The control directive applies to the whole kernel and all functions it calls. If multiple
control directives are present in the kernel or the functions it calls, they must all
have the same value.

If requireddim is specified (either by a control directive or when the finalizer was
invoked), it must be consistent with requiredgridsize and
requiredworkgroupsize if specified: if the value is 1, then their Y and Z dimensions
must be 1; if 2, then their Z dimension must be 1.

If the value for required dimensions is specified when the finalizer is invoked, the
value must match the value in any requireddim control directive.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Directives 233

requiredgridsize
Specifies the grid size that will be used when the kernel is dispatched. The X, Y, Z
dimensions of the range correspond to nx, ny, nz respectively. They must be an
immediate value of data type u32 with a value greater than 0, or WAVESIZE. It can be
placed in either a kernel or a function code block. This is only a hint and can be
ignored by the finalizer.

It is undefined if the kernel is dispatched with a grid range that does not match these
dimensions. A finalizer might be able to generate better code for the gridsize
operation. Also, if the total grid size is less than 224−1, then faster mul24 operations
might be able to be used for the workitemid, workitemabsid, workitemflatid, and
workitemflatabsid operations, because the terms for dimensions above the value
specified can be treated as 1. In conjunction with requiredworkgroupsize, a
finalizer might also be able to generate better code for gridgroupand
currentworkgroupsize operations (because it can determine if there are any
partial work-groups).

The control directive applies to the whole kernel and all functions it calls. If multiple
control directives are present in the kernel or the functions it calls, they must all
have the same values.

If the values for required grid size are specified when the finalizer is invoked, they
must match the corresponding values given in any requiredgridsize control
directive. The product of the values must also be less than or equal to any value
specified by maxflatgridsize.

requiredworkgroupsize
Specifies the work-group size that will be used when the kernel is dispatched. The
X, Y, Z dimensions of the range correspond to nx, ny, nz respectively. They must
be an immediate value of data type u32 with a value greater than 0, or WAVESIZE. It
can be placed in either a kernel or a function code block. This is only a hint and can
be ignored by the finalizer.

It is undefined if the kernel is dispatched with a work-group range that does not
match these dimensions.

A finalizer might be able to generate better code for barriers if it knows that the
work-group size is less than or equal to the wavefront size. This directive might
also allow better code for the workgroupsize, workitemid, workitemabsid,
workitemflatid, and workitemflatabsid operations.

The control directive applies to the whole kernel and all functions it calls. If multiple
control directives are present in the kernel or the functions it calls, they must all
have the same values.

If the values for required work-group size are specified when the finalizer is
invoked, they must match the corresponding values given in any
requiredworkgroupsize control directive. The product of the values must also be
less than or equal to any value specified by maxflatworkgroupsize .

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

234 Directives  

requirenopartialworkgroups
Specifies that the kernel must be dispatched with no partial work-groups. It can be
placed in either a kernel or a function code block. This is only a hint and can be
ignored by the finalizer.

It is undefined if the kernel is dispatched with any dimension of the grid size not
being an exact multiple of the corresponding dimension of the work-group size.

A finalizer might be able to generate better code for currentworkgroupsize if it
knows there are no partial work-groups, because the result becomes the same as
the workgroupsize operation. An HSA component might be able to dispatch a
kernel more efficiently if it knows there are no partial work-groups.

The control directive applies to the whole kernel and all functions it calls. It can
appear multiple times in a kernel or function. If it appears in a function (including
external functions), then it must also appear in all kernels that call that function (or
have been specified when the finalizer was invoked), either directly or indirectly.

If require no partial work-groups is specified when the finalizer is invoked, the
kernel behaves as if the requirenopartialworkgroups control directive has been
specified.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Directives 235

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

236 Directives  

Chapter 15

version Statement
This chapter describes the version statement.

15.1 Syntax of the version Statement
The version statement specifies the HSAIL version of the code and gives the attributes
of the required target architecture.

A single version statement must appear at the top of each program. Duplicate
version statements are allowed, which enables programs to be concatenated.

Each additional version statement must have the same major and minor numbers as
the previous statement.

Compilation scope ends at a statement with a version statement or at the end of the
compilation unit.

The syntax is:
version major : minor : profile : machine_model

major
Specifies that major version changes are incompatible and that this stream of
operations can only be compiled and executed by systems with the same major
number.

Major number changes are incompatible, so a kernel or function compiled with one
major number cannot call a function compiled with a different major number.

minor
Specifies that this stream of operations can only be compiled and executed by
systems with the same or larger minor number.

Minor number changes correspond to added functionality. Minor changes are
compatible, so kernels or functions compiled at one minor level can call functions
compiled at a different minor level, provided the implementation supports both
minor versions.

profile
Specifies which profile is used during finalization (see Chapter 17 Profiles (p.
241)). Possibilities are:

• $base — The Base profile should be used. Inclusion of this option indicates
that the associated HSAIL uses or requires features of the Base profile.

• $full — The Full profile should be used. Inclusion of this option indicates that
the associated HSAIL uses or requires features of the Full profile.

For more information, see Chapter 17 Profiles (p. 241).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  version Statement 237

machine_model
Specifies which machine model is used during finalization (see 2.10 Small and
Large Machine Models (p. 20)). Possibilities are:

• $large —Specifies large model, in which all flat and global addresses are 64
bits.

• $small — Specifies small model, in which all flat and global addresses are 32
bits. A legacy host CPU application executing in 32-bit mode might want
program data-parallel sections in small mode.

For more information, see 2.10 Small and Large Machine Models (p. 20).

It is a linker error for multiple files to have different major version numbers, different
profiles, or different machine models and to attempt to link to the same executable.

Examples

version 1:0: $full : $large;
version 1:0: $base : $small;

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

238 version Statement  

Chapter 16

Libraries
This chapter describes how to write HSAIL code for libraries.

16.1 Library Restrictions
HSAIL provides support for separately compiled libraries.

Code written for a library has the following restrictions:

• Every externally callable routine in the library should have external linkage.

• Every non-externally-callable routine in the library should have static linkage.

• Every HSAIL source file that contains a call to a library should have a declaration
specifying extern for each library function that it will call.

16.2 Library Example
An example of library code is shown below:

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Libraries 239

group_f32 &xarray[100]; // the library gets part of this array
extern function &libfoo(arg_u32 %res) (arg_u32 %sptr);
static function &a()(arg_u32 %formal);

kernel &main()
{
 {
 arg_u32 %in;
 // give the library part of the group memory
 lda_group_u32 $s1, [&xarray][4];
 st_arg_u32 $s1, [%in];
 arg_u32 %out;
 call &libfoo(%out)(%in);
 ld_arg_u32 $s2, [%out];
 }
 {
 arg_u32 %in1;
 st_arg_u32 $s2, [%in1];
 call &a(%in1);
 // $s2 has the library call result
 }
 // ...
};

static function &a ()(arg_u32 %formal)
{
 // get the result of the library call
 ld_arg_u32 $s1, [%formal];
 // ...
};

// now for the second compile unit - the library

static function &l1()(arg_u32 %input);
function &libfoo(arg_u32 %res) (arg_u32 %sptr)

{
 ld_arg_u32 $s1, [%sptr];
 ld_group_u32 $s2, [$s1]; // library reads some group data
 st_group_u32 $s2, [$s1+4]; // library reads some group data
 {
 arg_u32 %s;

 // give a function in the library part of the shared array
 add_u32 $s4, $s2, 20;
 st_arg_u32 $s2, [%s];
 call &l1(%s);
 }
 // ...
};

static function &l1()(arg_u32 %input)
{
 ld_arg_u32 $s6, [%input];
 // library passed address in group memory is now $s6
 // ...
 };

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

240 Libraries  

Chapter 17

Profiles
This chapter describes the HSAIL profiles.

17.1 What Are Profiles?
HSAIL provides two kinds of profiles:

• Base

• Full

HSAIL profiles are provided to guarantee that the implementation supports a required
feature set and meets a given set of program limits. The strictly defined set of HSAIL
profile requirements provides portability assurance to users that a certain level of
support is present.

The Base profile indicates that an implementation targets smaller systems that provide
better power efficiency without sacrificing performance. Precision is possibly
reduced in this profile to improve power efficiency.

The Full profile indicates that an implementation targets larger systems that have
hardware that can guarantee higher-precision results without sacrificing
performance.

The following rules apply to profiles:

• A finalizer can choose to support either or both profiles.

• A single profile applies to the entire compilation unit.

• An application is not allowed to mix profiles.

• The required profile must be selected by a modifier on the version statement.
See 15.1 Syntax of the version Statement (p. 237).

• Both the large and small machine models are supported in each profile.

• The profile applies to all declared options.

Both profiles are required to support the following:

• Ability to load, store and convert all of the floating-point types (f16, f32, f64).

• The f16 type and all operations on the type. f16 precision requirements are a
minimum requirement. Implementations can optionally provide additional
precision and range when computing f16 values in s registers. f16 results are
not required to be bit-reproducible across different HSA implementations (see
4.21 Floating-Point Numbers (p. 54)).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Profiles 241

• All 32-bit floating-point (f32) operations according to the declared profile.

• Handling of the syscall and debugtrap exceptions.

The runtime library should provide a mechanism that enables an application to
determine which features are available.

Both profiles are required to support all HSAIL requirements, except as specified in
17.2 Profile-Specific Requirements (p. 242).

See Appendix B Limits (p. 325) for details on limits that apply to both profiles.

17.2 Profile-Specific Requirements
This section describes the requirements that an implementation must adhere to in
order to claim support of the Full or Base profile.

17.2.1 Full Profile Requirements

Implementations of the Full profile are required to provide the following support:

• On all supported floating-point types:

• Must provide IEEE/ANSI Standard 754-2008 a correctly rounded result for
add/subtract/multiply/divide/fma and square root operations.

• Must support all 64-bit floating-point (f64) operations.

• Must support all four HSAIL-defined rounding modes.

• Must support floating-point subnormal values.

• Must support the ftz modifier and IEEE/ANSI Standard 754-2008 gradual
underflow.

• Must generate invalid operation exceptions for signaling NaN sources. In
general, NaN payloads and sign must be preserved, and signaling NaNs
must be converted to silent NaNs.

• Full exception handling feature set:

• Must support the DETECT and BREAK exception policies (see 13.3
Hardware Exception Policies (p. 221)) for the five exceptions specified in
13.2 Hardware Exceptions (p. 219).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

242 Profiles  

17.2.2 Base Profile Requirements

Implementations of the Base profile are required to provide the following support:

• On all supported floating-point types:

• Must provide IEEE/ANSI Standard 754-2008 a correctly rounded result for
add/subtract/multiply/fma operations.

• Must provide div operations within 2.5 ULP (unit of least precision) of the
mathematically accurate result.

• Must provide square root operations within 1 ULP of the mathematically
accurate result.

• Must follow these rounding mode rules: All floating-point operations
(except cvt) that support the floating-point rounding mode must only
support the near rounding mode. The cvt operation from a floating-point
type to a smaller floating-point type, and from integer type to floating-point
type, must only support the near rounding mode. The cvt operation from
floating-point type to integer type must only support zeroi and
zeroi_sat (which correspond to the standard floating-point to integer
conversion of C).

• Must flush subnormal values to zero. All HSAIL floating-point operations
must specify the ftz modifier (when ftz is valid).

• Must generate invalid operation exceptions for signaling NaN sources. In
general, NaN sign must be preserved, and signaling NaNs must be
converted to silent NaNs. However, it is not expected to preserve NaN
payloads.

• Minimal exception handling feature set:

• Must support the DETECT exception policy (see 13.3 Hardware Exception
Policies (p. 221)) for the exceptions specified in 13.2 Hardware Exceptions
(p. 219).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Profiles 243

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

244 Profiles  

Chapter 18

Guidelines for Compiler Writers
This chapter provides guidelines for compiler writers.

18.1 Register Pressure
The most important optimization for a high-level compiler is to minimize register
pressure.

Code should be scheduled to use as few registers as possible. On the other hand, it is
often important to try to move memory operations together either by using the vector
forms (v2, v3, and v4) or by making loads and stores consecutive. Each high-level
compiler will have to approach this carefully.

High-level compilers should use the spill segment to hold register spills, because the
finalizer might be able to deploy extra registers and remove the spills.

18.2 Using Lower-Precision Faster Operations
When a source language permits, for example by means of a fast math compiler
option, a high-level compiler can use faster but lower-precision substitutions for
slower operations. For example, div(src0, src1) could be replaced by src0 *
nrcp(src1) whenever the lower precision is permitted.

18.3 Functions
Functions are often quite expensive. High-level compilers should inline whenever
possible.

Inlining is critical because the finalizer might assume that all functions are recursive
and allocate significant arg space. Given that a typical HSAIL implementation is able
to execute thousands of work-items simultaneously, programs with functions can
frequently run out of arg space.

Common performance ratios might be: one “call” takes as long as 1000 “adds,” one
indirect call takes as long as 10,000 “adds.”

A simple high-level compiler could give up some performance by using an array for
a stack as:

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Guidelines for Compiler Writers 245

private_b8 %stacklike[8];
lda_private_u32 $s4, [%stacklike]; // the stack pointer

// Fill in the arguments
st_private_f32 4f, [$s4];
add_u32 $s4, $s4, 4;
st_private_f32 $s0, [$s4];
add_u32 $s4, $s4, 4;
{
 arg_u32 %sp;
 st_arg_u32 $s4, [%sp];
 call &stackfn (%sp)(%sp);
 ld_arg_u32 $s4, [%sp];
}
add_u32 $s4, $s4,-8;

// More code

};

function &stackfn (arg_u32 %sp) (arg_u32 %sp1)
{
 ld_arg_u32 $s4, [%sp];
 add_u32 $s4, $s4, 4;
 st_private_u32 $s1, [$s4];
 ld_private_b32 $s0, [$s4-8];
 ld_private_b32 $s0, [$s4-4];
 cmp_eq_b32_f32 $s0, $s1, $s0;
 ld_private_u32 $s1, [$s4];
 ret;
};

18.4 Frequent Rounding Mode Changes
Some implementations might choose to change the rounding mode of floating-point
operations by changing the value of some state register. This might require flushing
the floating-point pipeline, which can be quite slow. On such implementations,
frequent changes of IEEE/ANSI Standard 754-2008 rounding modes can be very slow.
Compilers are advised to group floating-point operations so that operations with the
same mode are adjacent when possible.

18.5 Wavefront Size
Some applications might be able to maximize performance with knowledge of the
wavefront size. Tool developers need to be careful about wavefront size assumptions,
because programs coded for a single wavefront size might generate wrong answers
if they are executed on machines with a different wavefront size.

Considering that wavefronts are important to get maximal performance but are not
necessary to ensure correct results, you should, as a general rule, try to avoid control
flow divergence. Work-items in a wavefront are numbered consecutively, so this
could be achieved by trying to code kernels so that consecutive work-items take the
same path.

This is similar to the need to write cache-aware code for best performance on a CPU.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

246 Guidelines for Compiler Writers  

18.6 Unaligned Access
While HSAIL supports unaligned accesses for loads and stores, these are quite
expensive and should be avoided. Unaligned accesses are not atomic, and atomic and
atomic no return operations do not support unaligned access.

If a load or store is known to be naturally aligned, it should be marked with the
aligned modifier. This might allow the finalizer to generate more efficient code on
some implementations. A front-end compiler may be able to determine this either due
to restrictions in the language it is compiling, or by analysis based on variable
allocation. However, incorrectly marked aligned memory accesses might result in
undefined results and generate memory exceptions on some implementations.

18.7 When to Use Flat Addressing
In general, segment addressing is faster than flat-address addressing, because a 32-bit
register is used to hold the address. However, a segment is limited to 4 GB in size.

A high-level compiler should attempt to identify where a segment address should be
used and avoid unnecessary 64-bit addressing operations.

18.8 Arg Arguments
While the calling convention allows arg arguments, every finalizer has the option to
pass some of the arguments in high-speed machine registers. High-level compiler
developers should read the microarchitecture guide for the chip for details.

18.9 Exceptions
If any exceptions are enabled for the BREAK policy (see 13.3 Hardware Exception
Policies (p. 221)), there are some restrictions on the optimizations that are permitted
by the finalizer. In general, however, the intent is that effective optimizations can still
be performed according to the optimization level specified to the finalizer.

For exceptions enabled for the BREAK or DETECT policy, the finalizer should ensure
that optimizations do not result in generating exceptions that would not have
happened without the optimization, or in eliminating exceptions that would have been
generated for non-dead code had the optimization not been done. However,
optimization is allowed to change the order and number of enabled exceptions that
are generated.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Guidelines for Compiler Writers 247

For example, for exceptions enabled for the BREAK or DETECT policy:

• A set of instructions that produce a result used in a visible result that can
generate an exception cannot be transformed into a set of instructions that
produce the same result but do not generate the exception. However, such
transformations are allowed if the exception generated is not enabled for the
BREAK or DETECT policy. For example, a divide by the immediate 0.0 could be
folded to a multiply by +infinity if the divide by zero exception is not enabled.

• It is allowed to eliminate instructions that are dead, even if they could generate
enabled exceptions. Namely, it is not necessary to prevent eliminating code
whose only (side) effect is to cause an exception. Operations such as syscall and
debugtrap, whose sole purpose is to generate an exception, must always be
preserved if in reachable code.

• Instruction reordering is allowed to change the order of exceptions, as long as
all enabled exceptions will still happen at least once. This allows transformations
such as constant expression elimination, expression reassociation, and folding
to be performed which can change the order that exceptions are generated, and
can result in the same exception being generated fewer times. These
optimizations are important to achieve performance comparable to code being
executed without exceptions enabled.

• Code hoisting out of a loop and partial redundancy elimination, which can cause
an exception where there previously was none, must not be permitted. For
example, hoisting a loop invariant expression out of a loop, where the expression
could cause an exception, must be guarded to ensure it is not executed if the loop
count is 0. However, it should still be legal to hoist the expression provided it is
guarded, which will also change both the order and number of times that
exceptions can be generated.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

248 Guidelines for Compiler Writers  

Chapter 19

BRIG: HSAIL Binary Format
This chapter describes BRIG, the HSAIL binary format.

19.1 What Is BRIG?
The BRIG representation describes all aspects of the textual representation of HSAIL
except:

• The textual layout.

• The textual format used to define constants and offsets. It just describes the value
required by the operation, which may be truncated from the textual value
specified.

• The use of explicit modifier values that are the default value used when the
modifier is omitted (such as for width, equiv, near or zeroi rounding mode, and
fboth memory fence modifier).

• The use of initializers to specify the size of an array. The textual form of HSAIL
allows the size of an array to be omitted from a variable definition if it has an
initializer, in which case it defaults to the number of elements in the initializer.
In BRIG, the variable definition is represented as if it had been explicitly declared
with a size.

• The options for the version statement when they do not need to be specified.

The finalizer is not required to read text format programs directly.

19.1.1 BRIG Sections

BRIG format is made up of five sections:

• .string — String section, containing all character strings and byte data used in
the compilation unit. See 19.4 .string Section (p. 266).

• .directive — The directives, which provide information for the finalizer. The
directives do not generate code. See 19.6 .directive Section (p. 270).

• .code — All of the executable operations. Most operations contain offsets to
the .operand section. See 19.7 .code Section (p. 285).

• .operand — The operands, such as immediate constants, registers, and address
expressions, that appear in the operations. See 19.8 .operand Section (p. 296).

• .debug — The debug information generated by the high-level compiler. The
finalizer does not modify the .debug section. See 19.9 .debug Section (p. 301).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 249

HSAIL does not specify ways to read and write these sections and any associated
header information.

As an example, a pragma is a directive containing:

• An offset to the code (the byte offset where the pragma applies).

• An offset to the .string section. The way the finalizer processes the HSAIL code
after the code offset may be affected by the contents of the string.

19.1.2 Format of Entries in the Sections

Every section starts with a BrigSectionHeader that contains the size of the section
(see 19.3 Section Header (p. 266)).

The BrigSectionHeader is followed by the entries of the section with no gaps between
each entry. Every entry is a multiple of four bytes, so every entry starts on a 4-byte
boundary.

The largest type used in all BRIG structures is 32 bits, so every entry is naturally
aligned. There must be no bytes after the last entry of a section and the end of the
section. All entries in the .directive , .code, and .operand sections have a similar
format.

Entries are variable-size. Each entry starts with a 16-bit unsigned integer containing
the length of the entry in bytes, followed by a 16-bit kind field indicating the type of
the entry.

While knowledge of the kind of an entry would enable the finalizer to calculate the
length in most cases, the length is described explicitly. This is because future
expansion of BRIG directives might add additional fields at the end of entries. The use
of a length field will allow old finalizers to process new BRIG sections (ignoring any
new fields).

All entries in the .string section consist of a 32-bit unsigned integer containing the
number of bytes of data, then the bytes of the data, followed by enough zero-pad bytes
to make the entry a multiple of 4.

BRIG structures are accessible in C style using structs. (C++ classes are not used.)

All BRIG values are stored in little endian format.

A number of BRIG structures (for example, BrigDirectiveLabelList and
BrigDirectiveSignature, among others) are variable-sized entities. Such structures
(except those in the .string section) have an element count in addition to the entry
size. Variable-size BRIG entries might need to be padded with trailing zeros to reach
a length that is a multiple of 4 bytes. In this case, the entry size is the total number of
bytes in the entry including the padding bytes, and the element count contains the
number of data items actually used.

In BRIG, both operations and operands are typed. Some operations have different
types for their operands, so this makes it easy for a finalizer to determine an operand's
type, and allows for validation tools. The types must match or the code is in error. In
particular, the required size of the immediate integer operand is defined by the type
of the operation where it is used.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

250 BRIG: HSAIL Binary Format  

19.2 Support Types
This section defines the various types and enumerations used in the structures
present in each BRIG section.

19.2.1 Section Offsets

These types are used to reference a structure in a specific section. The value is the
byte offset relative to the start of the section to the beginning of the referenced
structure. The value 0 is reserved to indicate that the offset does not reference any
structure:
typedef uint32_t BrigDirectiveOffset32_t;
typedef uint32_t BrigCodeOffset32_t;
typedef uint32_t BrigOperandOffset32_t;
typedef uint32_t BrigStringOffset32_t;

19.2.2 Section Structure Kinds

The .directive, .code, and .operand sections can each have a number of kinds of
structures. The following enumerations are used to identify the kind of structure:

• BrigDirectiveKinds is used to specify the kind of .directive section structure:

typedef uint16_t BrigDirectiveKinds16_t;
enum BrigDirectiveKinds {
 BRIG_DIRECTIVE_ARG_SCOPE_END = 0,
 BRIG_DIRECTIVE_ARG_SCOPE_START = 1,
 BRIG_DIRECTIVE_BLOCK_END = 2,
 BRIG_DIRECTIVE_BLOCK_NUMERIC = 3,
 BRIG_DIRECTIVE_BLOCK_START = 4,
 BRIG_DIRECTIVE_BLOCK_STRING = 5,
 BRIG_DIRECTIVE_COMMENT = 6,
 BRIG_DIRECTIVE_CONTROL = 7,
 BRIG_DIRECTIVE_EXTENSION = 8,
 BRIG_DIRECTIVE_FBARRIER = 9,
 BRIG_DIRECTIVE_FILE = 10,
 BRIG_DIRECTIVE_FUNCTION = 11,
 BRIG_DIRECTIVE_IMAGE = 12,
 BRIG_DIRECTIVE_IMAGE_INIT = 13,
 BRIG_DIRECTIVE_KERNEL = 14,
 BRIG_DIRECTIVE_LABEL = 15,
 BRIG_DIRECTIVE_LABEL_INIT = 16,
 BRIG_DIRECTIVE_LABEL_TARGETS = 17,
 BRIG_DIRECTIVE_LOC = 18,
 BRIG_DIRECTIVE_PRAGMA = 19,
 BRIG_DIRECTIVE_SAMPLER = 20,
 BRIG_DIRECTIVE_SAMPLER_INIT = 21,
 BRIG_DIRECTIVE_SCOPE = 22,
 BRIG_DIRECTIVE_SIGNATURE = 23,
 BRIG_DIRECTIVE_VARIABLE = 24,
 BRIG_DIRECTIVE_VARIABLE_INIT = 25,
 BRIG_DIRECTIVE_VERSION = 26
 };

• BrigInstKinds is used to specify the kind of .code section structure:

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 251

typedef uint16_t BrigInstKinds16_t;
enum BrigInstKinds {
 BRIG_INST_NONE = 0,
 BRIG_INST_BASIC = 1,
 BRIG_INST_ATOMIC = 2,
 BRIG_INST_ATOMIC_IMAGE = 3,
 BRIG_INST_BAR = 4,
 BRIG_INST_BR = 5,
 BRIG_INST_CMP = 6,
 BRIG_INST_CVT = 7,
 BRIG_INST_FBAR = 8,
 BRIG_INST_IMAGE = 9,
 BRIG_INST_MEM = 10,
 BRIG_INST_ADDR = 11,
 BRIG_INST_MOD = 12,
 BRIG_INST_SEG = 13,
 BRIG_INST_SOURCE_TYPE = 14
};

• BrigOperandKinds is used to specify the kind of .operand section structure:

typedef uint16_t BrigOperandKinds16_t;
enum BrigOperandKinds {
 BRIG_OPERAND_IMMED = 0,
 BRIG_OPERAND_WAVESIZE = 1,
 BRIG_OPERAND_REG = 2,
 BRIG_OPERAND_REG_VECTOR = 3,
 BRIG_OPERAND_ADDRESS = 4,
 BRIG_OPERAND_LABEL_REF = 5,
 BRIG_OPERAND_ARGUMENT_REF = 6,
 BRIG_OPERAND_ARGUMENT_LIST = 7,
 BRIG_OPERAND_FUNCTION_REF = 8,
 BRIG_OPERAND_FUNCTION_LIST = 9,
 BRIG_OPERAND_SIGNATURE_REF = 10,
 BRIG_OPERAND_FBARRIER_REF = 11
};

19.2.3 BrigAluModifierMask

BrigAluModifierMask defines bit masks that can be used to access the modifiers for
arithmetic logic unit operations.
typedef uint16_t BrigAluModifier16_t;
enum BrigAluModifierMask {
 BRIG_ALU_ROUND = 15,
 BRIG_ALU_FTZ = 16
};

• BRIG_ALU_ROUND — a bit mask that can be used to select the rounding mode.
Values are specified by the BrigRound enumeration. See 19.2.19 BrigRound (p.
260).

• BRIG_ALU_FTZ — a bit mask that can be used to select the setting for the ftz
(floating-point flush subnormals to zero) modifier. A 0 value means it is absent
and a non-0 value means it is present.

19.2.4 BrigAtomicOperation

BrigAtomicOperation is used to specify the type of atomic operation. For more
information, see 6.4 Atomic Operations: atomic and atomicnoret (p. 133).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

252 BRIG: HSAIL Binary Format  

typedef uint8_t BrigAtomicOperation8_t;
enum BrigAtomicOperation {
 BRIG_ATOMIC_AND = 0,
 BRIG_ATOMIC_OR = 1,
 BRIG_ATOMIC_XOR = 2,
 BRIG_ATOMIC_CAS = 3,
 BRIG_ATOMIC_EXCH = 4,
 BRIG_ATOMIC_ADD = 5,
 BRIG_ATOMIC_INC = 6,
 BRIG_ATOMIC_DEC = 7,
 BRIG_ATOMIC_MIN = 8,
 BRIG_ATOMIC_MAX = 9,
 BRIG_ATOMIC_SUB = 10
};

19.2.5 BrigCompareOperation

BrigCompareOperation is used to specify the type of compare operation. For more
information, see 5.17 Compare (cmp) Operation (p. 111).
typedef uint8_t BrigCompareOperation8_t;
enum BrigCompareOperation {
 BRIG_COMPARE_EQ = 0,
 BRIG_COMPARE_NE = 1,
 BRIG_COMPARE_LT = 2,
 BRIG_COMPARE_LE = 3,
 BRIG_COMPARE_GT = 4,
 BRIG_COMPARE_GE = 5,
 BRIG_COMPARE_EQU = 6,
 BRIG_COMPARE_NEU = 7,
 BRIG_COMPARE_LTU = 8,
 BRIG_COMPARE_LEU = 9,
 BRIG_COMPARE_GTU = 10,
 BRIG_COMPARE_GEU = 11,
 BRIG_COMPARE_NUM = 12,
 BRIG_COMPARE_NAN = 13,
 BRIG_COMPARE_SEQ = 14,
 BRIG_COMPARE_SNE = 15,
 BRIG_COMPARE_SLT = 16,
 BRIG_COMPARE_SLE = 17,
 BRIG_COMPARE_SGT = 18,
 BRIG_COMPARE_SGE = 19,
 BRIG_COMPARE_SGEU = 20,
 BRIG_COMPARE_SEQU = 21,
 BRIG_COMPARE_SNEU = 22,
 BRIG_COMPARE_SLTU = 23,
 BRIG_COMPARE_SLEU = 24,
 BRIG_COMPARE_SNUM = 25,
 BRIG_COMPARE_SNAN = 26,
 BRIG_COMPARE_SGTU = 27
};

19.2.6 BrigControlDirective

BrigControlDirective is used to specify the type of control directive. For more
information, see 14.6 Control Directives for Low-Level Performance Tuning (p. 229).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 253

typedef uint16_t BrigControlDirective16_t;
enum BrigControlDirective {
 BRIG_CONTROL_NONE = 0,
 BRIG_CONTROL_ENABLEBREAKEXCEPTIONS = 1,
 BRIG_CONTROL_ENABLEDETECTEXCEPTIONS = 2,
 BRIG_CONTROL_MAXDYNAMICGROUPSIZE = 3,
 BRIG_CONTROL_MAXFLATGRIDSIZE = 4,
 BRIG_CONTROL_MAXFLATWORKGROUPSIZE = 5,
 BRIG_CONTROL_REQUESTEDWORKGROUPSPERCU = 6,
 BRIG_CONTROL_REQUIREDDIM = 7,
 BRIG_CONTROL_REQUIREDGRIDSIZE = 8,
 BRIG_CONTROL_REQUIREDWORKGROUPSIZE = 9,
 BRIG_CONTROL_REQUIRENOPARTIALWORKGROUPS = 10
};

19.2.7 BrigExecutableModifierMask

BrigExecutableModifierMask defines bit masks that can be used to access properties
about an executable kernel or function.
typedef uint8_t BrigExecutableModifier8_t;
enum BrigExecuteableModifierMask {
 BRIG_EXECUTABLE_LINKAGE = 3,
 BRIG_EXECUTABLE_DECLARATION = 4
};

• BRIG_EXECUTABLE_LINKAGE — Values are specified by the BrigLinkage
enumeration. See 19.2.11 BrigLinkage (p. 255).

• BRIG_EXECUTABLE_DECLARATION — 0 means this is a definition and has a code
block; 1 means this is a declaration only and has no code block.

See 19.6.8 BrigDirectiveExecutable (p. 274).

19.2.8 BrigImageFormat

BrigImageFormat is used to specify the image format. For more information, see
7.1.4 Image Objects (p. 150).
typedef uint8_t BrigImageFormat8_t;
enum BrigImageFormat {
 BRIG_FORMAT_SNORM_INT8 = 0,
 BRIG_FORMAT_SNORM_INT16 = 1,
 BRIG_FORMAT_UNORM_INT8 = 2,
 BRIG_FORMAT_UNORM_INT16 = 3,
 BRIG_FORMAT_UNORM_SHORT_565 = 4,
 BRIG_FORMAT_UNORM_SHORT_555 = 5,
 BRIG_FORMAT_UNORM_SHORT_101010 = 6,
 BRIG_FORMAT_SIGNED_INT8 = 7,
 BRIG_FORMAT_SIGNED_INT16 = 8,
 BRIG_FORMAT_SIGNED_INT32 = 9,
 BRIG_FORMAT_UNSIGNED_INT8 = 10,
 BRIG_FORMAT_UNSIGNED_INT16 = 11,
 BRIG_FORMAT_UNSIGNED_INT32 = 12,
 BRIG_FORMAT_HALF_FLOAT = 13,
 BRIG_FORMAT_FLOAT = 14,
 BRIG_FORMAT_UNORM_INT24 = 15
};

Values 16 through 64 are available for extensions.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

254 BRIG: HSAIL Binary Format  

19.2.9 BrigImageGeometry

BrigImageGeometry is used to specify the number of coordinates needed to access an
image. For more information, see 7.1.3 Image Geometry (p. 149).
typedef uint8_t BrigImageGeometry8_t;
enum BrigImageGeometry {
 BRIG_GEOMETRY_1D = 0,
 BRIG_GEOMETRY_2D = 1,
 BRIG_GEOMETRY_3D = 2,
 BRIG_GEOMETRY_1DA = 3,
 BRIG_GEOMETRY_1DB = 4,
 BRIG_GEOMETRY_2DA = 5
};

Values 6 through 255 are available for extensions.

19.2.10 BrigImageOrder

BrigImageOrder is used to specify the order of image components. For more
information, see 7.1.4 Image Objects (p. 150).
typedef uint8_t BrigImageOrder8_t;
enum BrigImageOrder {
 BRIG_ORDER_R = 0,
 BRIG_ORDER_A = 1,
 BRIG_ORDER_RX = 2,
 BRIG_ORDER_RG = 3,
 BRIG_ORDER_RGX = 4,
 BRIG_ORDER_RA = 5,
 BRIG_ORDER_RGB = 6,
 BRIG_ORDER_RGBA = 7,
 BRIG_ORDER_RGBX = 8,
 BRIG_ORDER_BGRA = 9,
 BRIG_ORDER_ARGB = 10,
 BRIG_ORDER_INTENSITY = 11,
 BRIG_ORDER_LUMINANCE = 12,
 BRIG_ORDER_SRGB = 13,
 BRIG_ORDER_SRGBX = 14,
 BRIG_ORDER_SRGBA = 15,
 BRIG_ORDER_SBGRA = 16
};

Values 17 through 255 are available for extensions.

19.2.11 BrigLinkage

BrigLinkage is used to specify linkage. For more information, see 4.23 Linkage:
External, Static, and None (p. 59).
typedef uint8_t BrigLinkage8_t;
enum BrigLinkage {
 BRIG_LINKAGE_NONE = 0,
 BRIG_LINKAGE_STATIC = 1,
 BRIG_LINKAGE_EXTERN = 2
};

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 255

19.2.12 BrigMachineModel

BrigMachineModel is used to specify the kind of machine model. For more
information, see 2.10 Small and Large Machine Models (p. 20).
typedef uint8_t BrigMachineModel8_t;
enum BrigMachineModel {
 BRIG_MACHINE_SMALL = 0,
 BRIG_MACHINE_LARGE = 1
};

19.2.13 BrigMemoryFence

BrigMemoryFence is used to specify the kind of memory fence performed by an
operation. If an operation has a memory fence modifier (fence) but does not explicitly
specify the kind of memory fence, then the value used must be the default value
defined by the operation. If the operation does not support the memory fence
modifier, then BRIG_FENCE_NONE must be used. See 9.1 Memory Fence Modifier (p.
179).
typedef uint8_t BrigMemoryFence8_t;
enum BrigMemoryFence {
 BRIG_FENCE_NONE = 0,
 BRIG_FENCE_GROUP = 1,
 BRIG_FENCE_GLOBAL = 2,
 BRIG_FENCE_BOTH = 3,
 BRIG_FENCE_PARTIAL = 4,
 BRIG_FENCE_PARTIAL_BOTH = 5
};

19.2.14 BrigMemoryModifierMask

BrigMemoryModifierMask defines bit masks that can be used to access the modifiers
for memory operations.
typedef uint16_t BrigMemoryModifier8_t;
enum BrigMemoryModifierMask {
 BRIG_MEMORY_SEMANTIC = 15,
 BRIG_MEMORY_ALIGNED = 16
 };

• BRIG_MEMORY_SEMANTIC — A bit mask that can be used to select the semantics of
the memory operation. Values are specified by the BrigMemorySemantic
enumeration. If the operation does not support the memory semantic modifier,
then this must be BRIG_SEMANTIC_NONE. If the operation supports the memory
semantic modifier but does not specify it, then this must be
BRIG_SEMANTIC_REGULAR. See 19.2.15 BrigMemorySemantic (p. 257).

• BRIG_MEMORY_ALIGNED — A bit mask that can be used to select the setting for the
aligned modifier. A 0 value means it is absent and a non-0 value means it is
present. If the operation does not support the aligned modifier, then this must
be 0.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

256 BRIG: HSAIL Binary Format  

19.2.15 BrigMemorySemantic

BrigMemorySemantic is used to specify the semantics for a memory operation. For
more information, see 6.7 Examples of Memory Operations (p. 141).
typedef uint8_t BrigMemorySemantic8_t;
enum BrigMemorySemantic {
 BRIG_SEMANTIC_NONE = 0,
 BRIG_SEMANTIC_REGULAR = 1,
 BRIG_SEMANTIC_ACQUIRE = 2,
 BRIG_SEMANTIC_RELEASE = 3,
 BRIG_SEMANTIC_ACQUIRE_RELEASE = 4,
 BRIG_SEMANTIC_PARTIAL_ACQUIRE = 5,
 BRIG_SEMANTIC_PARTIAL_RELEASE = 6,
 BRIG_SEMANTIC_PARTIAL_ACQUIRE_RELEASE = 7
};

19.2.16 BrigOpcode

BrigOpcode is used to specify the opcode for the HSAIL operation.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 257

typedef uint16_t BrigOpcode16_t;
enum BrigOpcode {
 BRIG_OPCODE_NOP = 0,
 BRIG_OPCODE_ABS = 1,
 BRIG_OPCODE_ADD = 2,
 BRIG_OPCODE_BORROW = 3,
 BRIG_OPCODE_CARRY = 4,
 BRIG_OPCODE_CEIL = 5,
 BRIG_OPCODE_COPYSIGN = 6,
 BRIG_OPCODE_DIV = 7,
 BRIG_OPCODE_FLOOR = 8,
 BRIG_OPCODE_FMA = 9,
 BRIG_OPCODE_FRACT = 10,
 BRIG_OPCODE_MAD = 11,
 BRIG_OPCODE_MAX = 12,
 BRIG_OPCODE_MIN = 13,
 BRIG_OPCODE_MUL = 14,
 BRIG_OPCODE_MULHI = 15,
 BRIG_OPCODE_NEG = 16,
 BRIG_OPCODE_REM = 17,
 BRIG_OPCODE_RINT = 18,
 BRIG_OPCODE_SQRT = 19,
 BRIG_OPCODE_SUB = 20,
 BRIG_OPCODE_TRUNC = 21,
 BRIG_OPCODE_MAD24 = 22,
 BRIG_OPCODE_MAD24HI = 23,
 BRIG_OPCODE_MUL24 = 24,
 BRIG_OPCODE_MUL24HI = 25,
 BRIG_OPCODE_SHL = 26,
 BRIG_OPCODE_SHR = 27,
 BRIG_OPCODE_AND = 28,
 BRIG_OPCODE_NOT = 29,
 BRIG_OPCODE_OR = 30,
 BRIG_OPCODE_POPCOUNT = 31,
 BRIG_OPCODE_XOR = 32,
 BRIG_OPCODE_BITEXTRACT = 33,
 BRIG_OPCODE_BITINSERT = 34,
 BRIG_OPCODE_BITMASK = 35,
 BRIG_OPCODE_BITREV = 36,
 BRIG_OPCODE_BITSELECT = 37,
 BRIG_OPCODE_FIRSTBIT = 38,
 BRIG_OPCODE_LASTBIT = 39,
 BRIG_OPCODE_COMBINE = 40,
 BRIG_OPCODE_EXPAND = 41,
 BRIG_OPCODE_LDA = 42,
 BRIG_OPCODE_LDC = 43,
 BRIG_OPCODE_MOV = 44,
 BRIG_OPCODE_SHUFFLE = 45,
 BRIG_OPCODE_UNPACKHI = 46,
 BRIG_OPCODE_UNPACKLO = 47,
 BRIG_OPCODE_PACK = 48,
 BRIG_OPCODE_UNPACK = 49,
 BRIG_OPCODE_CMOV = 50,
 BRIG_OPCODE_CLASS = 51,
 BRIG_OPCODE_NCOS = 52,
 BRIG_OPCODE_NEXP2 = 53,
 BRIG_OPCODE_NFMA = 54,
 BRIG_OPCODE_NLOG2 = 55,
 BRIG_OPCODE_NRCP = 56,
 BRIG_OPCODE_NRSQRT = 57,
 BRIG_OPCODE_NSIN = 58,
 BRIG_OPCODE_NSQRT = 59,
 BRIG_OPCODE_BITALIGN = 60,
 BRIG_OPCODE_BYTEALIGN = 61,
 BRIG_OPCODE_PACKCVT = 62,
 BRIG_OPCODE_UNPACKCVT = 63,
 BRIG_OPCODE_LERP = 64,
 BRIG_OPCODE_SAD = 65,
 BRIG_OPCODE_SADHI = 66,
 BRIG_OPCODE_SEGMENTP = 67,

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

258 BRIG: HSAIL Binary Format  

 BRIG_OPCODE_FTOS = 68,
 BRIG_OPCODE_STOF = 69,
 BRIG_OPCODE_CMP = 70,
 BRIG_OPCODE_CVT = 71,
 BRIG_OPCODE_LD = 72,
 BRIG_OPCODE_ST = 73,
 BRIG_OPCODE_ATOMIC = 74,
 BRIG_OPCODE_ATOMICNORET = 75,
 BRIG_OPCODE_RDIMAGE = 76,
 BRIG_OPCODE_LDIMAGE = 77,
 BRIG_OPCODE_STIMAGE = 78,
 BRIG_OPCODE_ATOMICIMAGE = 79,
 BRIG_OPCODE_ATOMICIMAGENORET = 80,
 BRIG_OPCODE_QUERYIMAGEARRAY = 81,
 BRIG_OPCODE_QUERYIMAGEDEPTH = 82,
 BRIG_OPCODE_QUERYIMAGEFORMAT = 83,
 BRIG_OPCODE_QUERYIMAGEHEIGHT = 84,
 BRIG_OPCODE_QUERYIMAGEORDER = 85,
 BRIG_OPCODE_QUERYIMAGEWIDTH = 86,
 BRIG_OPCODE_QUERYSAMPLERCOORD = 87,
 BRIG_OPCODE_QUERYSAMPLERFILTER = 88,
 BRIG_OPCODE_CBR = 89,
 BRIG_OPCODE_BRN = 90,
 BRIG_OPCODE_BARRIER = 91,
 BRIG_OPCODE_ARRIVEFBAR = 92,
 BRIG_OPCODE_INITFBAR = 93,
 BRIG_OPCODE_JOINFBAR = 94,
 BRIG_OPCODE_LEAVEFBAR = 95,
 BRIG_OPCODE_RELEASEFBAR = 96,
 BRIG_OPCODE_WAITFBAR = 97,
 BRIG_OPCODE_LDF = 98,
 BRIG_OPCODE_SYNC = 99,
 BRIG_OPCODE_COUNTLANE = 100,
 BRIG_OPCODE_COUNTUPLANE = 101,
 BRIG_OPCODE_MASKLANE = 102,
 BRIG_OPCODE_SENDLANE = 103,
 BRIG_OPCODE_RECEIVELANE = 104,
 BRIG_OPCODE_CALL = 105,
 BRIG_OPCODE_RET = 106,
 BRIG_OPCODE_SYSCALL = 107,
 BRIG_OPCODE_ALLOCA = 108,
 BRIG_OPCODE_CLEARDETECTEXCEPT = 109,
 BRIG_OPCODE_CLOCK = 110,
 BRIG_OPCODE_CUID = 111,
 BRIG_OPCODE_CURRENTWORKGROUPSIZE = 112,
 BRIG_OPCODE_DEBUGTRAP = 113,
 BRIG_OPCODE_DIM = 114,
 BRIG_OPCODE_DISPATCHID = 115,
 BRIG_OPCODE_DISPATCHPTR = 116,
 BRIG_OPCODE_GETDETECTEXCEPT = 117,
 BRIG_OPCODE_GRIDGROUPS = 118,
 BRIG_OPCODE_GRIDSIZE = 119,
 BRIG_OPCODE_LANEID = 120,
 BRIG_OPCODE_MAXCUID = 121,
 BRIG_OPCODE_MAXWAVEID = 122,
 BRIG_OPCODE_NULLPTR = 123,
 BRIG_OPCODE_QID = 124,
 BRIG_OPCODE_QPTR = 125,
 BRIG_OPCODE_SETDETECTEXCEPT = 126,
 BRIG_OPCODE_WAVEID = 127,
 BRIG_OPCODE_WORKGROUPID = 128,
 BRIG_OPCODE_WORKGROUPSIZE = 129,
 BRIG_OPCODE_WORKITEMABSID = 130,
 BRIG_OPCODE_WORKITEMFLATABSID = 131,
 BRIG_OPCODE_WORKITEMFLATID = 132,
 BRIG_OPCODE_WORKITEMID = 133
};

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 259

19.2.17 BrigPack

BrigPack is used to specify the kind of packing control for packed data. For more
information, see 4.15 Packing Controls for Packed Data (p. 47).
typedef uint8_t BrigPack8_t;
enum BrigPack {
 BRIG_PACK_NONE = 0,
 BRIG_PACK_PP = 1,
 BRIG_PACK_PS = 2,
 BRIG_PACK_SP = 3,
 BRIG_PACK_SS = 4,
 BRIG_PACK_S = 5,
 BRIG_PACK_P = 6,
 BRIG_PACK_PPSAT = 7,
 BRIG_PACK_PSSAT = 8,
 BRIG_PACK_SPSAT = 9,
 BRIG_PACK_SSSAT = 10,
 BRIG_PACK_SSAT = 11,
 BRIG_PACK_PSAT = 12
};

19.2.18 BrigProfile

BrigProfile is used to specify the kind of profile. For more information, see 17.1 What
Are Profiles? (p. 241).
typedef uint8_t BrigProfile8_t;
enum BrigProfile {
 BRIG_PROFILE_BASE = 0,
 BRIG_PROFILE_FULL = 1
};

19.2.19 BrigRound

BrigRound is used to specify rounding. For more information, see 4.11 Rounding
Modes (p. 39) and 5.18.3 Rules for Rounding for Conversions (p. 117).

If the operation does not support a rounding mode, then BRIG_ROUND_NONE must be
used. Otherwise, the appropriate rounding mode must be used.

If the operation supports a rounding mode but does not explicitly specify one, then
BRIG_ROUND_FLOAT_NEAR_EVEN or BRIG_ROUND_INTEGER_ZERO must be specified as
appropriate, not BRIG_ROUND_NONE.

typedef uint8_t BrigRound8_t;
enum BrigRound {
 BRIG_ROUND_NONE = 0,
 BRIG_ROUND_FLOAT_NEAR_EVEN = 1,
 BRIG_ROUND_FLOAT_ZERO = 2,
 BRIG_ROUND_FLOAT_PLUS_INFINITY = 3,
 BRIG_ROUND_FLOAT_MINUS_INFINITY = 4,
 BRIG_ROUND_INTEGER_NEAR_EVEN = 5,
 BRIG_ROUND_INTEGER_ZERO = 6,
 BRIG_ROUND_INTEGER_PLUS_INFINITY = 7,
 BRIG_ROUND_INTEGER_MINUS_INFINITY = 8,
 BRIG_ROUND_INTEGER_NEAR_EVEN_SAT = 9,
 BRIG_ROUND_INTEGER_ZERO_SAT = 10,
 BRIG_ROUND_INTEGER_PLUS_INFINITY_SAT = 11,
 BRIG_ROUND_INTEGER_MINUS_INFINITY_SAT = 12
};

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

260 BRIG: HSAIL Binary Format  

19.2.20 BrigSamplerBoundaryMode

BrigSamplerBoundaryMode is used to specify the boundary mode for the boundaryU,
boundaryV, and boundaryW fields in the sampler object. For more information, see
7.1.7 Sampler Objects (p. 156).
typedef uint8_t BrigSamplerBoundaryMode8_t;
enum BrigSamplerBoundaryMode {
 BRIG_BOUNDARY_CLAMP = 0,
 BRIG_BOUNDARY_WRAP = 1,
 BRIG_BOUNDARY_MIRROR = 2,
 BRIG_BOUNDARY_MIRRORONCE = 3,
 BRIG_BOUNDARY_BORDER = 4
};

Values 5 through 255 are available for extensions.

19.2.21 BrigSamplerCoord

BrigSamplerCoord is used to specify the setting for the coord field in the sampler
object. For more information, see 7.1.7 Sampler Objects (p. 156).
enum BrigSamplerCoord {
 BRIG_COORD_NORMALIZED = 0,
 BRIG_COORD_UNNORMALIZED = 1
};

Values 5 through 255 are available for extensions.

19.2.22 BrigSamplerFilter

BrigSamplerFilter is used to specify the setting for the filter field in the sampler
object. For more information, see 7.1.7 Sampler Objects (p. 156).
enum BrigSamplerFilter {
 BRIG_FILTER_NEAREST = 0,
 BRIG_FILTER_LINEAR = 1
};

Values 2 through 63 are available for extensions.

19.2.23 BrigSamplerModifierMask

BrigSamplerModifierMask defines bit masks that can be used to access the properties
of a sampler object. For more information, see 7.1.7 Sampler Objects (p. 156).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 261

typedef uint8_t BrigSamplerModifier8_t;
enum BrigSamplerModifierMask {
 BRIG_SAMPLER_FILTER = 63,
 BRIG_SAMPLER_COORD = 64,
 BRIG_SAMPLER_COORD_UNNORMALIZED = 64
};

• BRIG_SAMPLER_FILTER — A six-bit field specifying one of the filter modes defined
in BrigSamplerFilter. See 19.2.22 BrigSamplerFilter (p. 261).

• BRIG_SAMPLER_COORD — A one-bit field specifying one of the two coord modes
defined in BrigSamplerCoord. For convenience, the value for
BRIG_COORD_UNNORMALIZED can be tested for using the bit mask
BRIG_SAMPLER_COORD_UNNORMALIZED. See 19.2.21 BrigSamplerCoord (p. 261).

19.2.24 BrigSegment

BrigSegment is used to specify the memory segment for a symbol. For more
information, see 2.8 Segments (p. 13).
typedef uint8_t BrigSegment8_t;
enum BrigSegment {
 BRIG_SEGMENT_NONE = 0,
 BRIG_SEGMENT_FLAT = 1,
 BRIG_SEGMENT_GLOBAL = 2,
 BRIG_SEGMENT_READONLY = 3,
 BRIG_SEGMENT_KERNARG = 4,
 BRIG_SEGMENT_GROUP = 5,
 BRIG_SEGMENT_PRIVATE = 6,
 BRIG_SEGMENT_SPILL = 7,
 BRIG_SEGMENT_ARG = 8
};

Values 9 through 16 are available for extensions.

19.2.25 BrigSymbolModifierMask

BrigSymbolModifierMask defines bit masks that can be used to access properties
about a symbol.
typedef uint8_t BrigSymbolModifier8_t;
enum BrigSymbolModifierMask {
 BRIG_SYMBOL_LINKAGE = 3,
 BRIG_SYMBOL_DECLARATION = 4,
 BRIG_SYMBOL_CONST = 8,
 BRIG_SYMBOL_ARRAY = 16,
 BRIG_SYMBOL_FLEX_ARRAY = 32
};

• BRIG_SYMBOL_LINKAGE — Values are specified by the BrigLinkage enumeration.
See 19.2.11 BrigLinkage (p. 255).

• BRIG_SYMBOL_DECLARATION — 1 means this is a declaration (an external); 0 means
this is a definition.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

262 BRIG: HSAIL Binary Format  

• BRIG_SYMBOL_CONST — 1 means const; 0 means read/write.

• BRIG_SYMBOL_ARRAY — 1 means vector (size in dim); 0 means scalar.

• BRIG_SYMBOL_FLEX_ARRAY — 1 means flexible array (array with no explicit size),
BRIG_SYMBOL_ARRAY must be set, and dim must be 0. An array declared in the
textual form without a size, but with an initializer, is not considered a flexible
array because its size is defined by the size of the initializer. In this case,
BRIG_SYMBOL_FLEX_ARRAY must not be set, and dim must be set to the size of the
initializer.

See 19.6.19 BrigDirectiveSymbol (p. 282).

19.2.26 BrigType

BrigType is used to specify the data compound type of operations, operands,
variables, arguments, initializers, and block numeric values.

The BrigType enumeration is encoded to make it easy to determine if the type is
packed, and if so to determine the packed element compound type and the bit size of
the packed type.

The base type is encoded in the bottom 5 bits, and the packed type size recorded in the
next 2 bits.

For the packed type size: 0 means not a packed type, 1 means a 32-bit packed type, 2
means a 64-bit packed type, and 3 means a 128-bit packed type. Masks, shifts, and
enumeration values are provided to access the base type and access and test the
packed type size.

For more information, see 4.14 Data Types (p. 46).
enum {
 BRIG_TYPE_PACK_SHIFT = 5,
 BRIG_TYPE_BASE_MASK = (1 << BRIG_TYPE_PACK_SHIFT) - 1,
 BRIG_TYPE_PACK_MASK = 3 << BRIG_TYPE_PACK_SHIFT,

 BRIG_TYPE_PACK_NONE = 0 << BRIG_TYPE_PACK_SHIFT,
 BRIG_TYPE_PACK_32 = 1 << BRIG_TYPE_PACK_SHIFT,
 BRIG_TYPE_PACK_64 = 2 << BRIG_TYPE_PACK_SHIFT,
 BRIG_TYPE_PACK_128 = 3 << BRIG_TYPE_PACK_SHIFT
};

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 263

typedef uint16_t BrigType16_t;
enum BrigType {
 BRIG_TYPE_NONE = 0,

 BRIG_TYPE_U8 = 1,
 BRIG_TYPE_U16 = 2,
 BRIG_TYPE_U32 = 3,
 BRIG_TYPE_U64 = 4,

 BRIG_TYPE_S8 = 5,
 BRIG_TYPE_S16 = 6,
 BRIG_TYPE_S32 = 7,
 BRIG_TYPE_S64 = 8,

 BRIG_TYPE_F16 = 9,
 BRIG_TYPE_F32 = 10,
 BRIG_TYPE_F64 = 11,

 BRIG_TYPE_B1 = 12,
 BRIG_TYPE_B8 = 13,
 BRIG_TYPE_B16 = 14,
 BRIG_TYPE_B32 = 15,
 BRIG_TYPE_B64 = 16,
 BRIG_TYPE_B128 = 17,

 BRIG_TYPE_SAMP = 18,
 BRIG_TYPE_ROIMG = 19,
 BRIG_TYPE_RWIMG = 20,

 BRIG_TYPE_FBAR = 21,

 BRIG_TYPE_U8X4 = BRIG_TYPE_U8 | BRIG_TYPE_PACK_32,
 BRIG_TYPE_U8X8 = BRIG_TYPE_U8 | BRIG_TYPE_PACK_64,
 BRIG_TYPE_U8X16 = BRIG_TYPE_U8 | BRIG_TYPE_PACK_128,

 BRIG_TYPE_U16X2 = BRIG_TYPE_U16 | BRIG_TYPE_PACK_32,
 BRIG_TYPE_U16X4 = BRIG_TYPE_U16 | BRIG_TYPE_PACK_64,
 BRIG_TYPE_U16X8 = BRIG_TYPE_U16 | BRIG_TYPE_PACK_128,

 BRIG_TYPE_U32X2 = BRIG_TYPE_U32 | BRIG_TYPE_PACK_64,
 BRIG_TYPE_U32X4 = BRIG_TYPE_U32 | BRIG_TYPE_PACK_128,

 BRIG_TYPE_U64X2 = BRIG_TYPE_U64 | BRIG_TYPE_PACK_128,

 BRIG_TYPE_S8X4 = BRIG_TYPE_S8 | BRIG_TYPE_PACK_32,
 BRIG_TYPE_S8X8 = BRIG_TYPE_S8 | BRIG_TYPE_PACK_64,
 BRIG_TYPE_S8X16 = BRIG_TYPE_S8 | BRIG_TYPE_PACK_128,

 BRIG_TYPE_S16X2 = BRIG_TYPE_S16 | BRIG_TYPE_PACK_32,
 BRIG_TYPE_S16X4 = BRIG_TYPE_S16 | BRIG_TYPE_PACK_64,
 BRIG_TYPE_S16X8 = BRIG_TYPE_S16 | BRIG_TYPE_PACK_128,

 BRIG_TYPE_S32X2 = BRIG_TYPE_S32 | BRIG_TYPE_PACK_64,
 BRIG_TYPE_S32X4 = BRIG_TYPE_S32 | BRIG_TYPE_PACK_128,

 BRIG_TYPE_S64X2 = BRIG_TYPE_S64 | BRIG_TYPE_PACK_128,

 BRIG_TYPE_F16X2 = BRIG_TYPE_F16 | BRIG_TYPE_PACK_32,
 BRIG_TYPE_F16X4 = BRIG_TYPE_F16 | BRIG_TYPE_PACK_64,
 BRIG_TYPE_F16X8 = BRIG_TYPE_F16 | BRIG_TYPE_PACK_128,

 BRIG_TYPE_F32X2 = BRIG_TYPE_F32 | BRIG_TYPE_PACK_64,
 BRIG_TYPE_F32X4 = BRIG_TYPE_F32 | BRIG_TYPE_PACK_128,

 BRIG_TYPE_F64X2 = BRIG_TYPE_F64 | BRIG_TYPE_PACK_128
};

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

264 BRIG: HSAIL Binary Format  

19.2.27 BrigVersion

The literal values of BrigVersion define the versions of BRIG defined by this revision
of the HSAIL specification.
enum BrigVersion {
 BRIG_VERSION_MAJOR = 0,
 BRIG_VERSION_MINOR = 0
};

• BRIG_VERSION_MAJOR — The major version of this revision of the HSAIL
specification. This is the value used in the version directive major field. BRIG
with a major version different from this value is not compatible with this
revision of the HSAIL specification.

• BRIG_VERSION_MINOR — The minor version of this revision of the HSAIL
specification. This is the value used in the version directive minor field. BRIG is
compatible with this revision of the HSAIL specification only if it has the same
major version and a minor version less than or equal to this value.

19.2.28 BrigWidth

BrigWidth is used to specify the width modifier. Because the width must be a power
of 2 between 1 and 231 inclusive, only enumerations for the power of 2 values are
present, and they are numbered as log2(n) + 1 of the value. In addition, width(all) and
width(WAVESIZE) have an enumeration value that comes after the explicit numbered
enumerations. This makes it is easy for a finalizer to determine if a width value is
greater than or equal to the wavefront size by simply doing a comparison of greater
than or equal with the enumeration value that corresponds to the actual wavefront
size of the implementation. For more information, see 2.13.1 Width Modifier (p. 22).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 265

typedef uint8_t BrigWidth8_t;
enum BrigWidth {
 BRIG_WIDTH_NONE = 0,
 BRIG_WIDTH_1 = 1,
 BRIG_WIDTH_2 = 2,
 BRIG_WIDTH_4 = 3,
 BRIG_WIDTH_8 = 4,
 BRIG_WIDTH_16 = 5,
 BRIG_WIDTH_32 = 6,
 BRIG_WIDTH_64 = 7,
 BRIG_WIDTH_128 = 8,
 BRIG_WIDTH_256 = 9,
 BRIG_WIDTH_512 = 10,
 BRIG_WIDTH_1024 = 11,
 BRIG_WIDTH_2048 = 12,
 BRIG_WIDTH_4096 = 13,
 BRIG_WIDTH_8192 = 14,
 BRIG_WIDTH_16364 = 15,
 BRIG_WIDTH_32768 = 16,
 BRIG_WIDTH_65536 = 17,
 BRIG_WIDTH_131072 = 18,
 BRIG_WIDTH_262144 = 19,
 BRIG_WIDTH_524288 = 20,
 BRIG_WIDTH_1048576 = 21,
 BRIG_WIDTH_2097152 = 22,
 BRIG_WIDTH_4194304 = 23,
 BRIG_WIDTH_8388608 = 24,
 BRIG_WIDTH_16777216 = 25,
 BRIG_WIDTH_33554432 = 26,
 BRIG_WIDTH_67108864 = 27,
 BRIG_WIDTH_134217728 = 28,
 BRIG_WIDTH_268435456 = 29,
 BRIG_WIDTH_536870912 = 30,
 BRIG_WIDTH_1073741824 = 31,
 BRIG_WIDTH_2147483648 = 32,
 BRIG_WIDTH_WAVESIZE = 33,
 BRIG_WIDTH_ALL = 34
};

19.3 Section Header
The first entry in every section must be BrigSectionHeader, which consists of a 32-
bit word that is the byte size of the section. There are no section termination flags. Any
code that generates Brig needs to correctly fill in each section's size. This also allows
a section offset of 0 to indicate no value, because the first entry in each section starts
at an offset of 4.

Syntax is:
struct BrigSectionHeader {
 uint32_t size;
 };

Field is:

• size — size in bytes of the section

19.4 .string Section
The .string section must start with a BrigSectionHeader entry. See 19.3 Section
Header (p. 266).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

266 BRIG: HSAIL Binary Format  

The .string section is used both to store textual strings used for identifiers within
HSAIL and for the value of variable initializers and block numeric and block string
values.

An entry comprises both the length of the data in bytes and the actual bytes of the data.

An offset value into the .string section references the start of the BrigString, not
the data, which starts at data within BrigString.

Entries for HSAIL identifiers and block string values are stored as ASCII character
strings without null termination. The length is the number of characters in the
identifier.

Data entries are stored as raw bytes with no terminating byte. The length is the
number of bytes in the data.

In both cases, the length does not include the number of padding bytes that must be
added to make the entry a multiple of 4.

Each BrigString starts on a 4-byte boundary. Any required padding bytes after the
data to make the entry a multiple of 4 bytes must be 0.

There must be only one entry for each unique BrigString value. Thus, the value of
two entries is equal if and only if their .string section offsets are equal. This allows a
finalizer to quickly determine if two strings used as an identifier are equal by simply
comparing the offset values. Entries being used for identifiers and those used for data
are not distinguished in the .string section. The uniqueness property applies across
all entries regardless of how they are being used. Indeed, an entry can be used both
as an identifier and as the initializer data for a variable.

Syntax is:
struct BrigString {
 uint32_t byteCount;
 uint8_t bytes[1];
 };

Fields are:

• byteCount — Number of bytes in the string data. Does not include any padding
bytes that have to be added to ensure the next BrigString starts on a 4-byte
boundary. Therefore, to locate the start of the next BrigString, the value ((7 +
byteCount) / 4) * 4) must be added to the offset of the current BrigString.

• bytes — Variable-sized. Must be allocated with (((byteCount + 3) / 4) *
4) elements. Any elements after byteCount − 1 must be 0. Bytes 0 to byteCount
− 1 contain the data.

19.5 Block Sections in BRIG

19.5.1 Overview

A block section can appear in either the .directive section or the .debug section.

Each block section is identified by a name. More than one block section can have the
same name.

Each block section starts with a BrigBlockStart and ends with a BrigBlockEnd.

Block sections cannot nest.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 267

The table below shows the block section structures in alphabetical order.

Table 19–1 Block Section Structures

Name Description

BrigBlockEnd Ends a block section. See 19.5.2 BrigBlockEnd (p. 268).

BrigBlockNumeric List of numeric values in the block section. See 19.5.3 BrigBlockNumeric (p. 268).

BrigBlockStart Starts a block section. See 19.5.4 BrigBlockStart (p. 269).

BrigBlockString A reference to a null-terminated character string. See 19.5.5 BrigBlockString (p. 269).

19.5.2 BrigBlockEnd

BrigBlockEnd ends a block section.

Syntax is:
struct BrigBlockEnd {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_BLOCK_END.

19.5.3 BrigBlockNumeric

BrigBlockNumeric is a variable-size list of numeric values. All the values should have
the same type.

More than one BrigBlockNumeric can be in a single block section.

Syntax is:
struct BrigBlockNumeric {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigType16_t type;
 uint16_t reserved;
 uint32_t elementCount;
 BrigStringOffset32_t data;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_BLOCK_NUMERIC.

• BrigType16_t type — Type of the data. Must be BRIG_TYPE_B8,
BRIG_TYPE_B16, BRIG_TYPE_B32, or BRIG_TYPE_B64.

• uint16_t reserved — Must be 0.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

268 BRIG: HSAIL Binary Format  

• uint32_t elementCount — Number of data elements that are present in the
structure.

• BrigStringOffset32_t data — The offset in the .string section to the entry
for the data bytes. The number of data bytes must be elementCount times the
byte size of type.

19.5.4 BrigBlockStart

BrigBlockStart starts a block section.

It provides a name that can be used to separate information used by different
debuggers or runtimes.

More than one BrigBlockStart can have the same name.

Syntax is:
struct BrigBlockStart {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 BrigStringOffset32_t name;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_BLOCK_START.

• BrigCodeOffset32_t code — Byte offset into the .code section. The block
applies immediately before the operation at that location. For example, a block
supplying debug information for a function would have the byte offset set to the
first operation in the function.

• BrigStringOffset32_t name — Byte offset into the place in the .string section
where the name appears. Can be either "debug" or "rti". All BrigBlockStart
directives with name "debug" appear in the .debug section. All
BrigBlockStart directives with name "rti" appear in the .directive section.
All other block directives are placed in the same section as the preceding
BrigBlockStart.

19.5.5 BrigBlockString

BrigBlockString is a reference to a character string.

Syntax is:
struct BrigBlockString {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigStringOffset32_t string;
};

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 269

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_BLOCK_STRING.

• BrigStringOffset32_t string — The offset in the .string section to the entry
for the string characters. The number of data bytes must be the length of the
string.

19.6 .directive Section
The .directive section must start with a BrigSectionHeader entry. See 19.3 Section
Header (p. 266).

19.6.1 Overview

Directives are statements, corresponding with functions, kernels, and global
declarations. They are not code. Directives appear in the .directive section in the
same order in which they appear in the text format.

Directives that have limited scope have a special placement rule: Immediately after a
function or kernel directive, BRIG requires the directives that describe the arguments
to be in a certain order. Return arguments are first, followed by input arguments,
followed by the directives that apply only to the function or kernel.

All directives contain a reference to code using the code field. The directive applies to
the operation at code and the following operations.

For directives that are outside of a function or kernel, the code value is the first
operation of the first function or kernel where the directive applies. In a compilation
unit with no functions, code would specify the start of the .code section. Directives
must be ordered with respect to code values. It is not valid in BRIG for directive A to
follow directive B in the .directive section and have A.code < B.code.

If the directive applies after all code in the .code section, the offset should be the size
of the .code section.

The table below shows the directives in alphabetical order.

Table 19–2 Structures in the .directive Section

Name Description

BrigDirectiveBase Helper type. See 19.6.3 BrigDirectiveBase (p. 271).

BrigDirectiveCallableBase Helper type. See 19.6.4 BrigDirectiveCallableBase (p. 272).

BrigDirectiveArgScope See 19.6.5 BrigDirectiveArgScope (p. 272).

BrigDirectiveComment Comment string. See 19.6.6 BrigDirectiveComment (p. 273).

BrigDirectiveControl Assorted compiler controls. See 19.6.7 BrigDirectiveControl (p. 273).

BrigDirectiveExecutable Describes a kernel or function. See 19.6.8 BrigDirectiveExecutable (p.
274).

BrigDirectiveExtension Used to enable device-specific extensions. See 19.6.9
BrigDirectiveExtension (p. 275).

BrigDirectiveFbarrier Used for fbarrier definitions. See 19.6.10 BrigDirectiveFbarrier (p. 276).

BrigDirectiveFile File descriptor. See 19.6.11 BrigDirectiveFile (p. 276).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

270 BRIG: HSAIL Binary Format  

Name Description

BrigDirectiveImageInit Declare an image object. See 19.6.12 BrigDirectiveImageInit (p. 277).

BrigDirectiveLabel Declare a label. See 19.6.13 BrigDirectiveLabel (p. 278).

BrigDirectiveLabelList Entries in a variable-size label list used in a jump table. See 19.6.14
BrigDirectiveLabelList (p. 278).

BrigDirectiveLoc Source-level line position. See 19.6.15 BrigDirectiveLoc (p. 279).

BrigDirectivePragma More compiler controls. See 19.6.16 BrigDirectivePragma (p. 279).

BrigDirectiveSamplerInit Declares a sampler object. See 19.6.17 BrigDirectiveSamplerInit (p. 280).

BrigDirectiveSignature Declares a function signature. See 19.6.18 BrigDirectiveSignature (p. 281).

BrigDirectiveSymbol Declares a symbol. See 19.6.19 BrigDirectiveSymbol (p. 282).

BrigDirectiveVariableInit Declares a variable. See 19.6.20 BrigDirectiveVariableInit (p. 283).

BrigDirectiveVersion HSAIL version and target information. See 19.6.21 BrigDirectiveVersion (p.
284).

See also 19.5 Block Sections in BRIG (p. 267).

19.6.2 Declarations and Definitions in the Same Compilation Unit

If the same symbol (variable, image, sampler, or function) is both declared and defined
in the same compilation unit, all references to the symbol in the Brig representation
must refer to the definition, even if the definition comes after the use. If there are
multiple declarations and no definitions, then all uses must refer to the first declaration
in lexical order. This avoids a finalizer needing to traverse the entire Brig compilation
unit to determine if there is a definition for a symbol in the compilation unit.

19.6.3 BrigDirectiveBase

The .directive section should not include any items of type BrigDirectiveBase. The
declaration is only a helper type so that tools processing Brig can use pointers to a
BrigDirectiveBase as a generic pointer to any directive, which all start with this field
layout.

Syntax is:
struct BrigDirectiveBase {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Can be any member of the
BrigDirectiveKinds enumeration. See 19.2.2 Section Structure Kinds (p. 251).

• BrigCodeOffset32_t code — Byte offset to the place in the .code section where
the directive appears.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 271

19.6.4 BrigDirectiveCallableBase

The .directive section should not include any items of type
BrigDirectiveCallableBase. The declaration is only a helper type so that tools
processing Brig can use pointers to a BrigDirectiveCallableBase as a generic
pointer to any BrigDirectiveExecutable or BrigDirectiveSignature directive,
which start with this field layout.

Syntax is:
struct BrigDirectiveCallableBase {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 BrigStringOffset32_t name;
 uint16_t inArgCount;
 uint16_t outArgCount;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_KERNEL,
BRIG_DIRECTIVE_FUNCTION, or BRIG_DIRECTIVE_SIGNATURE.

• BrigCodeOffset32_t code — Byte offset to the place in the .code section where
the first byte of the first instruction appears.

• BrigStringOffset32_t name — Byte offset to the place in the .string section
where the name of the kernel, function, or signature appears.

• uint16_t inArgCount — The number of input parameters to the kernel,
function, or signature.

• uint16_t outArgCount — The number of output (returned value) parameters
of the kernel, function, or signature. For kernels, this will always be 0.

19.6.5 BrigDirectiveArgScope

BrigDirectiveArgScope is an argument scope.

Syntax is:
struct BrigDirectiveArgScope {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_ARGSCOPE_END or
BRIG_DIRECTIVE_ARGSCOPE_START.

• BrigCodeOffset32_t code — The place in the .code section where the
argument scope starts or ends, respectively.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

272 BRIG: HSAIL Binary Format  

19.6.6 BrigDirectiveComment

BrigDirectiveComment is a comment string.

Syntax is:
struct BrigDirectiveComment {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 BrigStringOffset32_t name;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_COMMENT.

• BrigCodeOffset32_t code — Byte offset to the place in the .code section where
the comment appears.

• BrigStringOffset32_t name — Byte offset to the place in the .string section
where the text of the comment (including the //) appears.

19.6.7 BrigDirectiveControl

BrigDirectiveControl specifies assorted compiler controls, such as the maximum
number of work-items in a work-group. For information on placement and scope of
control directives, see 14.6 Control Directives for Low-Level Performance Tuning (p.
229).

Syntax is:
struct BrigDirectiveControl {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 BrigControlDirective16_t control;
 BrigType16_t type;
 uint16_t reserved;
 uint16_t valueCount;
 BrigOperandOffset32_t values[1];
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_CONTROL.

• BrigCodeOffset32_t code — Byte offset to the place in the .code section where
the control applies.

• BrigControlDirective16_t control — Used to select the type of control,
maximum size of a work-group, number of work-groups per compute unit, or
controls on optimization. See 19.2.6 BrigControlDirective (p. 253).

• BrigType16_t type — The Brig type of the values.

• uint16_t reserved — Must be 0.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 273

• uint16_t valueCount — Number of values.

• BrigOperandOffset32_t values[1] — A variable-sized array of values that
apply to the control directive. Must have valueCount elements. Each element is
a byte offset to operands in the .operand section. The operand must either be
BRIG_OPERAND_IMMED or BRIG_OPERAND_WAVESIZE.

19.6.8 BrigDirectiveExecutable

BrigDirectiveExecutable describes a kernel or function.

Kernels are arranged in the .directive section as:

1. BrigDirectiveExecutable with kind of BRIG_DIRECTIVE_KERNEL

2. Zero or more source parameters

3. Zero or more directives that are scoped to the kernel

4. The next top-level item

Functions are arranged in the .directive section as:

1. BrigDirectiveExecutable with kind of BRIG_DIRECTIVE_FUNCTION

2. Zero or more destination parameters

3. Zero or more source parameters

4. Zero or more directives that are scoped to the function

5. The next top-level item

Syntax is:
struct BrigDirectiveExecutable {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 BrigStringOffset32_t name;
 uint16_t inArgCount;
 uint16_t outArgCount;
 BrigDirectiveOffset32_t firstInArg;
 BrigDirectiveOffset32_t firstScopedDirective;
 BrigDirectiveOffset32_t nextTopLevelDirective;
 uint32_t instCount;
 BrigExecutableModifier8_t modifier;
 uint8_t reserved[3];
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_KERNEL or
BRIG_DIRECTIVE_FUNCTION.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

274 BRIG: HSAIL Binary Format  

• BrigCodeOffset32_t code — Byte offset to the place in the .code section where
the first operation of the kernel or function appears. If this is a function
declaration, or a kernel or function definition with an empty code block, then
this should be the offset of the next operation in the .code section, or equal to
the .code section size if there are no more operations.

• BrigStringOffset32_t name — Byte offset to the place in the .string section
giving the name of the kernel or function.

• uint16_t inArgCount — The number of input parameters to the kernel or
function.

• uint16_t outArgCount — The number of output parameters from the function.
Must be 0 for kernels.

• BrigDirectiveOffset32_t firstInArg — Byte offset to the location in
the .directive section of the first input parameter. If there are no input
parameters, then this must be the same value as firstScopedDirective.

• BrigDirectiveOffset32_t firstScopedDirective — Byte offset to the
location in the .directive section of the first directive inside the scope of this
kernel or function. If this is a function declaration with no code block (indicated
by modifier and BRIG_EXECUTABLE_DECLARATION being non-zero), or if the
kernel or function definition has no directives, then this must be the same value
as nextTopLevelDirective.

• BrigDirectiveOffset32_t nextTopLevelDirective — Byte offset to the
location in the .directive section of the next directive outside the scope of this
kernel or function. If there are no more directives, then this must be the size of
the .directive section.

• uint32_t instCount — The number of instructions (not bytes) in this kernel or
function. If a function or kernel with no instructions, or a function declaration,
then this must be 0.

• BrigExecutableModifier8_t modifier; — Modifier for the kernel or function.
The BRIG_EXECUTABLE_LINKAGE must be BRIG_LINKAGE_NONE for kernels. The
BRIG_EXECUTABLE_DECLARATION must be 0 for kernels because they always have
a code block. See 19.2.7 BrigExecutableModifierMask (p. 254).

• uint8_t reserved[3] — Must be 0.

19.6.9 BrigDirectiveExtension

BrigDirectiveExtension is used to enable a device-specific extension. For more
information, see 14.1 extension Directive (p. 225).

Syntax is:
struct BrigDirectiveExtension {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 BrigStringOffset32_t name;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_FBARRIER.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 275

• BrigCodeOffset32_t code — Byte offset to the place in the .code section where
the fbarrier symbol is defined.

• BrigStringOffset32_t name — Byte offset to the place in the .string section
where the name of the fbarrier appears.

19.6.10 BrigDirectiveFbarrier

BrigDirectiveFbarrier is used for fbarrier definitions.

Syntax is:
struct BrigDirectiveFbarrier {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 BrigStringOffset32_t name;
 };

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_EXTENSION.

• BrigCodeOffset32_t code — Byte offset to the place in the .code section where
the extension applies.

• BrigStringOffset32_t name — Byte offset to the place in the .string section
where the name of the extension appears.

19.6.11 BrigDirectiveFile

BrigDirectiveFile specifies the file descriptor. This is similar to the C preprocessor
#file.

The BrigDirectiveFile must appear before any BrigDirectiveLoc that uses the file
ID.

For more information, see 14.3 file Directive (p. 228).

Syntax is:
struct BrigDirectiveFile {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 uint32_t fileid;
 BrigStringOffset32_t filename;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_FILE.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

276 BRIG: HSAIL Binary Format  

• BrigCodeOffset32_t code — Byte offset to the place in the .code section where
the file directive appears. See 14.3 file Directive (p. 228).

• uint32_t fileid — An integer value that can be used by a BrigDirectiveLoc
to refer to the file.

• BrigStringOffset32_t filename — Byte offset to the place in the .string
section where the name of the file appears.

19.6.12 BrigDirectiveImageInit

BrigDirectiveImageInit specifies the initializer for an image definition. For more
information, see 7.1.4 Image Objects (p. 150).

Syntax is:
struct BrigDirectiveImageInit {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 uint32_t width;
 uint32_t height;
 uint32_t depth;
 uint32_t array;
 BrigImageOrder8_t order;
 BrigImageFormat8_t format;
 uint16_t reserved;
};

Fields are:

• size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_IMAGEINIT.

• BrigCodeOffset32_t code — Byte offset to the place in the .code section where
the image initializer appears.

• uint32_t width — The image width; 0 if not specified.

• uint32_t height — The image height; 0 if not specified. This is always 0 for a 1D
image.

• uint32_t depth — The image depth; 0 if not specified. This is always 0 for a 1D
or 2D image.

• uint32_t array — The number of 1DA and 2DA images. Must be 1 for all other
image types.

• BrigImageOrder8_t order — Order for the components. Components of an
image can be reordered when values are read from or written to memory. A
member of the BrigImageOrder enumeration. See 19.2.10 BrigImageOrder (p.
255).

• BrigImageFormat8_t format — Format for storing images. Images can be stored
in assorted packed formats. A member of the BrigImageFormat enumeration.
See 19.2.8 BrigImageFormat (p. 254).

• uint16_t reserved — Must be 0.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 277

19.6.13 BrigDirectiveLabel

BrigDirectiveLabel declares a label.

Syntax is:
struct BrigDirectiveLabel {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 BrigStringOffset32_t name;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_LABEL.

• BrigCodeOffset32_t code — Byte offset to the place in the .code section where
the label appears. Label directives cannot be at the top level. They must be inside
the scope of a function or a kernel.

• BrigStringOffset32_t name — Byte offset to the place in the .string section
table where the name of the label appears.

19.6.14 BrigDirectiveLabelList

BrigDirectiveLabelList is used for a labeltargets statement (see 8.4 Label Targets
(labeltargets Statement) (p. 176)) and a variable label initializer (see 8.1.2 Indirect
Branches (p. 172)).

This is a variable-size directive.

Syntax is:
struct BrigDirectiveLabelList {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 BrigDirectiveOffset32_t label;
 uint16_t labelCount;
 uint16_t reserved;
 BrigDirectiveOffset32_t labels[1];
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_LABEL_LIST or
BRIG_DIRECTIVE_LABEL_INIT.

• BrigCodeOffset32_t code — Byte offset to the place in the .code section where
the label list appears.

• BrigDirectiveOffset32_t label — The offset to the directive for the label used
to refer to the label list in the HSAIL textual representation.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

278 BRIG: HSAIL Binary Format  

• uint16_t labelCount — Number of labels in the list.

• uint16_t reserved — Must be 0.

• BrigDirectiveOffset32_t labels[1] — A variable-sized array of labels
containing the offsets of each label in the .directive section. Must have
labelCount elements.

19.6.15 BrigDirectiveLoc

BrigDirectiveLoc specifies the source-level line position. This is similar to
the .line cpp directive. For more information, see 14.4 loc Directive (p. 228).

Syntax is:
struct BrigDirectiveLoc {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 uint32_t fileid;
 uint32_t line;
 uint32_t column;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_LOC.

• BrigCodeOffset32_t code — Byte offset into the .code section. The instructions
starting at that offset up to the next BrigDirectiveLoc are assumed to
correspond to the source location defined by this directive.

• uint32_t fileid — An integer value that is used to look up the corresponding
fileid in a BrigDirectiveFile statement, which then gives the name of the
source file.

• uint32_t line — The finalizer and other tools should assume that the operation
at code corresponds to line. Multiple BrigDirectiveLoc statements can refer
to the same line.

• uint32_t column — The finalizer and other tools should assume that the
operation at code corresponds to column. Multiple BrigDirectiveLoc
statements can refer to the same column.

19.6.16 BrigDirectivePragma

BrigDirectivePragma allows additional directives to be given to control the compiler.
For more information, see 14.5 pragma Directive (p. 229).

Syntax is:
struct BrigDirectivePragma {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 BrigStringOffset32_t name;
};

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 279

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_PRAGMA.

• BrigCodeOffset32_t code — Byte offset into the place in the .code section
where the pragma applies.

• BrigStringOffset32_t name — Byte offset into the place in the .string section
where the text of the pragma appears.

19.6.17 BrigDirectiveSamplerInit

BrigDirectiveSamplerInit declares a sampler object. For more information, see
7.1.7 Sampler Objects (p. 156).

Syntax is:
struct BrigDirectiveSamplerInit {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigSamplerModifier8_t modifier;
 BrigSamplerBoundaryMode8_t boundaryU;
 BrigSamplerBoundaryMode8_t boundaryV;
 BrigSamplerBoundaryMode8_t boundaryW;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_SAMPLER_INIT.

• BrigSamplerModifier8_t modifier — Modifier for the sampler. See 19.2.23
BrigSamplerModifierMask (p. 261).

• BrigSamplerBoundaryMode8_t boundaryU — The boundary mode for borders
for the first coordinate. Must be a member of the BrigSamplerBoundaryMode
enumeration. See 19.2.20 BrigSamplerBoundaryMode (p. 261).

• BrigSamplerBoundaryMode8_t boundaryV — The boundary mode for borders
for the second coordinate. Must be a member of the
BrigSamplerBoundaryMode enumeration. See 19.2.20
BrigSamplerBoundaryMode (p. 261). This is ignored if this is a 1D image, and must
be BRIG_BOUNDARY_UNKNOWN.

• BrigSamplerBoundaryMode8_t boundaryW — The boundary mode for borders
for the third coordinate. Must be a member of the BrigSamplerBoundaryMode
enumeration. See 19.2.20 BrigSamplerBoundaryMode (p. 261). This is ignored if
this is a 1D or 2D image, and must be BRIG_BOUNDARY_UNKNOWN.

For arrays (1DA or 2DA), this coordinate is the array selector. It is never
normalized and always uses BRIG_BOUNDARY_CLAMP.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

280 BRIG: HSAIL Binary Format  

19.6.18 BrigDirectiveSignature

BrigDirectiveSignature declares a function signature. This is a variable-size
directive. The size depends on the number of input and output types passed as
arguments to the function.

For more information, see 10.3.3 Function Signature (p. 200).

Syntax is:
struct BrigDirectiveSignature {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 BrigStringOffset32_t name;
 uint16_t inArgCount;
 uint16_t outArgCount;
 struct {
 BrigType16_t type;
 uint8_t align;
 BrigSymbolModifier8_t modifier;
 uint32_t dimLo;
 uint32_t dimHi;
 } args[1];
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_SIGNATURE.

• BrigCodeOffset32_t code — Byte offset into the place in the .code section
where the function signature applies.

• BrigStringOffset32_t name — Byte offset into the place in the .string section
where the name appears.

• uint16_t inArgCount — The number of source types.

• uint16_t outArgCount — The number of return types.

• args[] — Variable-sized. Must be be allocated with (inArgCount +
outArgCount) elements that contain descriptions of each signature argument.

• BrigType16_t type — The Brig type of the argument.

• uint8_t align — The required alignment of the argument in bytes.
Possible values are 0, 1, 2, 4, 8, and 16. The value 0 indicates natural
alignment, 1 means any alignment, 2 is any even byte boundary, 4 is any
multiple of four, and so forth.

• BrigSymbolModifier8_t modifier — Modifier for the argument. Only the
last argument of a function can be a flexible array indicated by
BRIG_SYMBOL_FLEX_ARRAY. Linkage must always be BRIG_LINKAGE_NONE
for signature arguments. A signature argument cannot be marked
BRIG_SYMBOL_CONST. See 19.2.25 BrigSymbolModifierMask (p. 262).

• uint32_t dimLo — dimLo is combined with dimHi to form a 64-bit
dimension for the argument:
dim = (uint64_t(dimHi) << 32) | uint64_t(dimLo)

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 281

dim must be 0 unless modifier indicates the argument is an array that is
not a flexible array.

• uint32_t dimHi — See above.

19.6.19 BrigDirectiveSymbol

BrigDirectiveSymbol is used for variable, sampler, and image declarations or
definitions.

Syntax is:
struct BrigDirectiveSymbol {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 BrigStringOffset32_t name;
 BrigDirectiveOffset32_t init;
 BrigType16_t type;
 BrigSegment8_t segment;
 uint8_t align;
 uint32_t dimLo;
 uint32_t dimHi;
 BrigSymbolModifier8_t modifier;
 uint8_t reserved[3];
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_VARIABLE,
BRIG_DIRECTIVE_IMAGE, or BRIG_DIRECTIVE_SAMPLER.

• BrigCodeOffset32_t code — Byte offset into the .code section showing where
the variable, image, or sampler symbol is declared or defined.

• BrigStringOffset32_t name — Byte offset into the place in the .string section
where the symbol name appears.

• BrigDirectiveOffset32_t init — Must be 0 if there is no initializer; otherwise
must reference BRIG_DIRECTIVE_VARIABLE_INIT,
BRIG_DIRECTIVE_IMAGE_INIT, or BRIG_DIRECTIVE_SAMPLER_INIT if kind is
BRIG_DIRECTIVE_VARIABLE, BRIG_DIRECTIVE_IMAGE, or
BRIG_DIRECTIVE_SAMPLER, respectively.

• BrigType 16_t type — The Brig type of of the symbol. Must be
BRIG_TYPE_ROIMG or BRIG_TYPE_RWIMG if and only if kind is
BRIG_DIRECTIVE_IMAGE. Must be BRIG_TYPE_SAMP if and only if kind is
BRIG_DIRECTIVE_SAMPLER.

• BrigSegment8_t segment — Segment that will hold the symbol. A member of
the BrigSegment enumeration. See 19.2.24 BrigSegment (p. 262).

• uint8_t align — The required symbol alignment in bytes. Possible values are
0, 1, 2, 4, 8, and 16. The value 0 means natural alignment, 1 means any alignment,
2 is any even byte boundary, 4 is any multiple of four, and so forth.

• uint32_t dimLo — dimLo is combined with dimHi to form a 64-bit value:

dim = (uint64_t(dimHi) << 32) | uint64_t(dimLo)

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

282 BRIG: HSAIL Binary Format  

The BRIG_SYMBOL_ARRAY and BRIG_SYMBOL_FLEX_ARRAY bits of the modifier
field indicate if the symbol is an array, and if so if it is a flexible array (an array
without a specified size) respectively. See 19.2.25 BrigSymbolModifierMask (p.
262).

If the symbol is an array with a size, then dim must be the number of elements
in the array. If the symbol is not an array or is a flexible array, then dim must be
0. An array declared in the textual form without a size, but with an initializer, is
not considered a flexible array. In this case, the value of dim is related to the
directive referenced by the init field: if BrigDirectiveVariableInit, then
dim must be the same value as elementCount field of the
BrigDirectiveVariableInit; if BrigDirectiveImageInit or
BrigDirectiveSamplerInit, then dim must be 1 because HSAIL allows only a
single initializer for image and sampler objects.

• uint32_t dimHi — See above.

• BrigSymbolModifier8_t modifier — Modifier for the symbol. See 19.2.25
BrigSymbolModifierMask (p. 262).

• uint8_t reserved[3] — Must be 0.

19.6.20 BrigDirectiveVariableInit

BrigDirectiveVariableInit declares a variable.

A BrigDirectiveVariableInit gives alignment, type, and other information about
the variable. A BrigDirectiveVariableInit is used for most variable declarations
(but not for image-related objects).

Syntax is:
struct BrigDirectiveVariableInit {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 BrigStringOffset32_t data;
 uint32_t elementCount;
 BrigType16_t type;
 uint16_t reserved;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_VARIABLE_INIT.

• BrigCodeOffset32_t code — Byte offset into the place in the .code section
where the initializer of the variable is declared.

• BrigStringOffset32_t data — Byte offset into the place in the .string section
where the data value is available. The data size must be elementCount times the
size of type.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 283

• uint32_t elementCount — Number of initialization values that are present in
the data. If elementCount is less than the greater of 1 and the dim value of the
BrigDirectiveSymbol referencing this BrigDirectiveVariableInit, then
when the runtime allocates and initializes the variable, any elements after
elementCount must be initialized to 0. This is true even if elementCount is 0.

• BrigType16_t type — Type of each element.

• uint16_t reserved — Must be 0.

19.6.21 BrigDirectiveVersion

BrigDirectiveVersion specifies the HSAIL version and target information. For more
information, see Chapter 15 version Statement (p. 237).

This directive must be the first directive in the .directive section.

Additional BrigDirectiveVersion directives are allowed, but they must all be the
same value.

Syntax is:
struct BrigDirectiveVersion {
 uint16_t size;
 BrigDirectiveKinds16_t kind;
 BrigCodeOffset32_t code;
 uint16_t major;
 uint16_t minor;
 BrigProfile8_t profile;
 BrigMachineModel8_t machineModel;
 uint16_t reserved;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigDirectiveKinds16_t kind — Must be BRIG_DIRECTIVE_VERSION.

• BrigCodeOffset32_t code — Byte offset into the .code section showing where
the version information applies.

• uint16_t major — The HSAIL major version. Must be BRIG_VERSION_MAJOR to
be compatible with this revision of the HSAIL specification. See 19.2.27
BrigVersion (p. 265).

• uint16_t minor — The HSAIL minor version. When generating BRIG, must be
BRIG_VERSION_MINOR. When consuming BRIG, must be less than or equal to
BRIG_VERSION_MINOR to be compatible with this revision of the HSAIL
specification. See 19.2.27 BrigVersion (p. 265).

• BrigProfile8_t profile — The profile. A member of the BrigProfile
enumeration. See 19.2.18 BrigProfile (p. 260)

• BrigMachineModel8_t machineModel — The machine model. A member of the
BrigMachineModel enumeration. See 19.2.12 BrigMachineModel (p. 256).

• uint16_t reserved; — Must be 0.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

284 BRIG: HSAIL Binary Format  

19.7 .code Section
The .code section must start with a BrigSectionHeader entry. See 19.3 Section
Header (p. 266).

19.7.1 Overview

All HSAIL operations that might generate ISA are stored in the .code section.

All BrigInst* start with the BrigInstBase layout. See 19.7.2 BrigInstBase (p. 286).

Each operation in the .code section starts with a 32-bit word containing a size (in
bytes) and an operation kind (format).

The size and kind are followed by an opcode, a type, and five offsets to operands. As
with text format, the destination operand is first, followed by source operands.
Operations that use fewer than five operands must set the remaining operand fields
to 0. As a special exception, the BrigInstNone format only contains the size and
kind. See 19.7.15 BrigInstNone (p. 294).

If an operation does not produce a value, the value BRIG_TYPE_NONE must be used for
the type. Examples of these operations are call, ret, cbr, and brn, among others.

The table below shows the possible formats for the operations in alphabetical order.
Every operation uses one of these formats.

Table 19–3 Formats of Operations in the .code Section

Name Description

BrigInstBase Field layout used for most operations. See 19.7.2 BrigInstBase (p. 286).

BrigInstBasic Field layout used for all operations that require no extra modifier information.
See 19.7.3 BrigInstBasic (p. 286).

BrigInstAddr Address operations. See 19.7.4 BrigInstAddr (p. 287).

BrigInstAtomic Atomic operations. See 19.7.5 BrigInstAtomic (p. 287).

BrigInstAtomicImage Atomic image-related operations. See 19.7.6 BrigInstAtomicImage (p. 288).

BrigInstBar Barrier and sync operations. See 19.7.7 BrigInstBar (p. 289).

BrigInstBr Branch and call operations with certain modifiers. See 19.7.8 BrigInstBr (p. 289).

BrigInstCmp Compare operation. See 19.7.9 BrigInstCmp (p. 290).

BrigInstCvt Convert operation. See 19.7.10 BrigInstCvt (p. 291).

BrigInstFbar Fbarrier operations. See 19.7.11 BrigInstFbar (p. 291).

BrigInstImage Image-related operations. See 19.7.12 BrigInstImage (p. 292).

BrigInstMem Memory operations other than load/store. See 19.7.13 BrigInstMem (p. 293).

BrigInstMod Operations with a single modifier, such as a rounding mode. See 19.7.14
BrigInstMod (p. 293).

BrigInstNone Special operation that is always ignored. See 19.7.15 BrigInstNone (p. 294).

BrigInstSeg Segment checking and segment conversion operations. See 19.7.16 BrigInstSeg (p.
295).

BrigInstSourceType Operations that have different types for their destination and source operands.
See 19.7.17 BrigInstSourceType (p. 295).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 285

19.7.2 BrigInstBase

The .code section should not include any items of type BrigInstBase. The declaration
is only a helper type so that tools processing Brig can use pointers to a
BrigInstBase as a generic pointer to any instruction (except BrigInstBase), which
all start with this field layout.

Syntax is:
struct BrigInstBase {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigInstKinds16_t kind — Must be BRIG_INST_BASE.

• BrigOpcode16_t opcode — Opcode associated with the operation.

• BrigType16_t type — Data type of the destination of the operation. If the
operation does not use a structure that provides a source type, this can also be
the type of the source operands.

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

19.7.3 BrigInstBasic

The BrigInstBasic format is used for all operations that require no extra modifier
information.

Syntax is:
struct BrigInstBasic {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigInstKinds16_t kind — Must be BRIG_INST_BASIC.

• BrigOpcode16_t opcode — Opcode associated with the operation.

• BrigType16_t type — Data type of the destination of the operation.

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

286 BRIG: HSAIL Binary Format  

19.7.4 BrigInstAddr

The BrigInstAddr format is used for address operations.

Syntax is:
struct BrigInstAddr {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
 BrigSegment8_t segment;
 uint8_t reserved[3];
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigInstKinds16_t kind — Must be BRIG_INST_ADDR.

• BrigOpcode16_t opcode — Opcode.

• BrigType16_t type — Data type of the destination of the operation.

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

• BrigSegment8_t segment — Segment. A member of the BrigSegment
enumeration. If the operation does not specify a segment, this field must be set
to BRIG_SEGMENT_FLAT. See 19.2.24 BrigSegment (p. 262).

• uint8_t reserved — Must be 0.

19.7.5 BrigInstAtomic

The BrigInstAtomic format is used for atomic and atomic no return operations.

Syntax is:
struct BrigInstAtomic {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
 BrigSegment8_t segment;
 BrigMemorySemantic8_t memorySemantic;
 BrigAtomicOperation8_t atomicOperation;
 int8_t reserved;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• uint16_t kind — Must be BRIG_INST_ATOMIC.

• BrigOpcode16_t opcode — Opcode for an atomic or atomicnoret operation.

• BrigDataType16_t type — Data type of the memory destination of the
operation.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 287

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

• BrigSegment8_t segment — Segment. A member of the BrigSegment
enumeration. If the operation does not specify a segment, this field must be set
to BRIG_SEGMENT_FLAT. See 19.2.24 BrigSegment (p. 262).

• BrigMemorySemantic8_t memorySemantic — Memory semantics of the atomic
operation. See 19.2.15 BrigMemorySemantic (p. 257).

• BrigAtomicOperation8_t atomicOperation — An atomic suboperation such as
add or or.

• int8_t reserved — Must be 0.

19.7.6 BrigInstAtomicImage

The BrigInstAtomicImage format is used for atomic image and atomic image no
return operations.

This format is similar to BrigInstAtomic, but includes an additional field for image
information.

Syntax is:
struct BrigInstAtomicImage {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
 BrigType16_t imageType;
 BrigType16_t coordType;
 BrigImageGeometry8_t geometry;
 BrigAtomicOperation8_t atomicOperation;
 uint16_t reserved;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigInstKinds16_t kind — Must be BRIG_INST_ATOMIC_IMAGE.

• BrigOpcode16_t opcode — Opcode for an atomicimage or atomicimagenoret
operation.

• BrigType8_t type — Data type of the memory destination of the operation.

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

• BrigType16_t imageType — Type of the image. Must be BRIG_TYPE_RWIMG.

• BrigType16_t coordType — Type of the coordinates. Must be BRIG_TYPE_U32.

• BrigImageGeometry8_t geometry — Image geometry: 1D, 2D, 3D, 1DA, 2DA, or
1DB. See 19.2.9 BrigImageGeometry (p. 255).

• BrigAtomicOperation8_t atomicOperation — An atomic suboperation such as
and or or. See 19.2.4 BrigAtomicOperation (p. 252).

• uint16_t reserved; — Must be 0.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

288 BRIG: HSAIL Binary Format  

19.7.7 BrigInstBar

The BrigInstBar format is used for the barrier and sync operations.

Syntax is:
struct BrigInstBar {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
 BrigMemoryFence8_t memoryFence;
 BrigWidth8_t width;
 uint16_t reserved;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigInstKinds16_t kind — Must be BRIG_INST_BAR.

• BrigOpcode16_t opcode — Opcode, such as BRIG_OPCODE_BARRIER or
BRIG_OPCODE_SYNC.

• BrigType8_t type — Data type of the destination of the operation.

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

• BrigMemoryFence8_t memoryFence; — Memory fence specified by the
operation. See 19.2.13 BrigMemoryFence (p. 256).

• BrigWidth8_t width — The width modifier. If the operation does not support
the width modifier, then this must be BRIG_WIDTH_NONE. If the operation
supports the width modifier but does not specify it, then this must be
BRIG_WIDTH_ALL (the default for BRIG_OPCODE_BARRIER). If the operation
specifies width(all), then this must be BRIG_WIDTH_ALL. Otherwise, this must
be the corresponding enumeration value from BrigWidth (see 19.2.28 BrigWidth
(p. 265)).

• uint16_t reserved — Must be 0.

19.7.8 BrigInstBr

The BrigInstBr format is used for the branch and call operations.

Syntax is:
struct BrigInstBr {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
 BrigAluModifier16_t modifier;
 BrigWidth8_t width;
 uint8_t reserved;
};

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 289

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigInstKinds16_t kind — Must be BRIG_INST_BR.

• BrigOpcode16_t opcode — Opcode: BRIG_OPCODE_BRN, BRIG_OPCODE_CBR, or
BRIG_OPCODE_CALL.

• BrigType8_t type — Data type of the destination of the operation.

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

• BrigAluModifier16_t modifier — The modifier flags for this operation. See
19.2.3 BrigAluModifierMask (p. 252).

• BrigWidth8_t width — The width modifier. If the operation does not support
the width modifier, then this must be BRIG_WIDTH_ALL (the default for the direct
branch and direct call operations). If the operation supports the width modifier
but does not specify it, then this must be BRIG_WIDTH_1 (the default for indirect
branch and indirect call operations). If the operation specifies width(all), then
this must be BRIG_WIDTH_ALL. Otherwise, this must be the corresponding
enumeration value from BrigWidth (see 19.2.28 BrigWidth (p. 265)).

• uint8_t reserved — Must be 0.

19.7.9 BrigInstCmp

The BrigInstCmp format is used for compare operations. The compare operation
needs a special format because it has a comparison operator and a second type.

Syntax is:
struct BrigInstCmp {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
 BrigType16_t sourceType;
 BrigAluModifier16_t modifier;
 BrigCompareOperation8_t compare;
 BrigPack8_t pack;
 uint16_t reserved;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigInstKinds16_t kind — Must be BRIG_INST_CMP.

• BrigOpcode16_t opcode — Opcode. Must be BRIG_OPCODE_CMP.

• BrigType16_t type — Data type of the destination of the compare operation.

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

• BrigType16_t sourceType — Type of the sources.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

290 BRIG: HSAIL Binary Format  

• BrigAluModifier16_t modifier — The modifier flags for this operation. See
19.2.3 BrigAluModifierMask (p. 252).

• BrigCompareOperation8_t compare — The specific comparison (greater than,
less than, and so forth).

• BrigPack8_t pack — Packing control. See 19.2.17 BrigPack (p. 260).

• uint16_t reserved — Must be 0.

For packed compares, the value of type must be u with the same length as
sourceType.

19.7.10 BrigInstCvt

The BrigInstCvt format is used for convert operations.

Syntax is:
struct BrigInstCvt {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
 BrigType16_t sourceType;
 BrigAluModifier16_t modifier;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigInstKinds16_t kind — Must be BRIG_INST_CVT.

• BrigOpcode16_t opcode — Opcode. Must be BRIG_OPCODE_CVT.

• BrigType16_t type — Data type of the destination of the convert operation.

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

• BrigType16_t sourceType — Type of the sources.

• BrigAluModifier16_t modifier — The modifier flags for this operation. See
19.2.3 BrigAluModifierMask (p. 252).

19.7.11 BrigInstFbar

The BrigInstFbar format is used for fbarrier operations.

Syntax is:
struct BrigInstFbar {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
 BrigMemoryFence8_t memoryFence;
 BrigWidth8_t width;
 uint16_t reserved;
};

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 291

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigInstKinds16_t kind — Must be BRIG_INST_FBAR.

• BrigOpcode16_t opcode — Opcode.

• BrigType16_t type — Data type of the destination of the operation. Must be
BRIG_TYPE_NONE, because fbarrier operations do not have a destination type.

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

• BrigMemoryFence8_t memoryFence — Memory fence specified by the operation.
If the operation does not support the memory fence modifier, then this must be
BRIG_FENCE_NONE. If the operation does support the memory fence modifier but
does not specify it, then this must be BRIG_FENCE_BOTH (the default for fbarrier
operations). See See 19.2.13 BrigMemoryFence (p. 256).

• BrigWidth8_t width — The width modifier. If the operation does not support
the width modifier, then this must be BRIG_WIDTH_NONE. If the operation
supports the width modifier but does not specify it, then this must be
BRIG_WIDTH_WAVESIZE (the default for fbarrier operations). (See 19.2.28
BrigWidth (p. 265).

• uint16_t reserved — Must be 0.

19.7.12 BrigInstImage

The BrigInstImage format is used for the image operations.

Syntax is:
struct BrigInstImage {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
 BrigType16_t imageType;
 BrigType16_t coordType;
 BrigImageGeometry8_t geometry;
 uint8_t reserved[3];
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigInstKinds16_t kind — Must be BRIG_INST_IMAGE.

• BrigOpcode16_t opcode — Opcode.

• BrigType16_t type — Data type of the destination of the operation.

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

• BrigType16_t imageType — Type of the image. Must beBRIG_INST_ROIMG or
BRIG_INST_RWIMG.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

292 BRIG: HSAIL Binary Format  

• BrigType16_t coordType — Type of the coordinates.

• BrigImageGeometry8_t geometry — Image geometry: 1D, 2D, 3D, 1DA, 2DA, or
1DB. See 19.2.9 BrigImageGeometry (p. 255).

• uint8_t reserved[3] — Must be 0.

19.7.13 BrigInstMem

The BrigInstMem format is used for memory operations.

Syntax is:
struct BrigInstMem {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
 BrigSegment8_t segment;
 BrigMemoryModifier8_t modifier;
 uint8_t equivClass;
 BrigWidth8_t width;
}

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigInstKinds16_t kind — Must be BRIG_INST_MEM.

• BrigOpcode16_t opcode — Opcode.

• BrigType16_t type — Data type of the destination of the operation.

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

• BrigSegment8_t segment — Segment. A member of the BrigSegment
enumeration. If the operation does not specify a segment, this field must be set
to BRIG_SEGMENT_FLAT. See 19.2.24 BrigSegment (p. 262).

• BrigMemoryModifier8_t modifier — Memory modifier flags of the operation.
See 19.2.14 BrigMemoryModifierMask (p. 256).

• uint8_t equivClass — Memory equivalence class. If no equivalence class is
explicitly given, then the value must be set to 0, which is general memory that
can interact with all other equivalence classes. See 6.1.4 Equivalence Classes (p.
124).

• BrigWidth8_t width — The width modifier. If the operation does not support
the width modifier, then this must be BRIG_WIDTH_NONE. If the operation
supports the width modifier but does not specify it, then this must be
BRIG_WIDTH_1 (the default for load operations). If the operation specifies
width(all), then this must be BRIG_WIDTH_ALL. Otherwise, this must be the
corresponding enumeration value from BrigWidth (see 19.2.28 BrigWidth (p.
265)).

19.7.14 BrigInstMod

The BrigInstMod format is used for ALU operations with a modifier.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 293

Syntax is:
struct BrigInstMod {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
 BrigAluModifier16_t modifier;
 BrigPack8_t pack;
 uint8_t reserved;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigInstKinds16_t kind — Must be BRIG_INST_MOD.

• BrigOpcode16_t opcode — Opcode.

• BrigType16_t type — Data type of the destination of the operation.

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

• BrigAluModifier16_t modifier — The modifier flags for this operation. If an
operation does not have a rounding modifier, then BRIG_ALU_ROUND must be set
to BRIG_ROUND_NONE. If an operation does not have an ftz modifier, then
BRIG_ALU_FTZ must not be set. See 19.2.3 BrigAluModifierMask (p. 252).

• BrigPack8_t pack — Packing control. If the operation does not have a packing
modifier, this must be set to BRIG_PACK_NONE. See 19.2.17 BrigPack (p. 260).

• uint8_t reserved — Must be 0.

19.7.15 BrigInstNone

The BrigInstNone format is a special format that allows a tool to overwrite long
operations with short ones, provided the tool sets the remaining words to be a
BrigInstNone format.

BrigInstNone is the one structure that does not contain all the fields of
BrigInstBase. This allows it to be as small as as four bytes. It can also be used to cover
any number of 4-bytes by setting the size field accordingly, in which case any bytes
after the BrigInstNone structure must be set to 0.

Syntax is:
struct BrigInstNone {
 uint16_t size;
 BrigInstKinds16_t kind;
};

Fields are:

• uint16_t size — The number of bytes covered by the BrigInstNone structure.
Must be a multiple of 4. If size is greater than the size of the BrigInstNone
structure (4 bytes), then any extra bytes must be set to 0.

• BrigInstKinds16_t kind — Must be BRIG_INST_NONE (which has the value 0).

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

294 BRIG: HSAIL Binary Format  

19.7.16 BrigInstSeg

The BrigInstSeg format is used for segment checking, segment conversion, query
image, and query sampler operations.

Syntax is:
struct BrigInstSeg {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
 BrigType16_t sourceType;
 BrigSegment8_t segment;
 uint8_t reserved;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigInstKinds16_t kind — Must be BRIG_INST_SEG.

• BrigOpcode16_t opcode — Opcode.

• BrigType16_t type — Data type of the destination of the operation.

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

• BrigType16_t sourceType — Type of the source. For the query_image and
query_sampler operations, must be BRIG_TYPE_NONE, because they have no
source type specified.

• BrigSegment8_t segment — Segment. A member of the BrigSegment
enumeration. If the operation does not specify a segment, this field must be set
to BRIG_SEGMENT_FLAT. See 19.2.24 BrigSegment (p. 262).

• uint8_t reserved — Must be 0.

19.7.17 BrigInstSourceType

The BrigInstSourceType format is used for operations that have different types for
their destination and source operands.

Syntax is:
struct BrigInstSourceType {
 uint16_t size;
 BrigInstKinds16_t kind;
 BrigOpcode16_t opcode;
 BrigType16_t type;
 BrigOperandOffset32_t operands[5];
 BrigType16_t sourceType;
 uint16_t reserved;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigInstKinds16_t kind — Must be BRIG_INST_SOURCE_TYPE.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 295

• BrigOpcode16_t opcode — Opcode.

• BrigType16_t type — Data type of the destination of the operation.

• BrigOperandOffset32_t operands[5] — Byte offset to operands in
the .operand section. Unused operands must be 0.

• BrigType16_t sourceType — Type of the source.

• uint16_t reserved — Must be 0.

19.8 .operand Section
The .operand section must start with a BrigSectionHeader entry. See 19.3 Section
Header (p. 266).

19.8.1 Overview

The .operand section contains the operands that appear in the HSAIL operations.

It is legal, but not required, for multiple operation operands to refer to the same
operand in the .operand section if they are syntactically the same. This can reduce
the size of the .operand section.

All operand structures start with the BrigOperandBase field layout. See 19.8.2
BrigOperandBase (p. 296).

The table below shows the structures in the .operand section in alphabetical order.

Table 19–4 Structures in the .operand Section

Name Description

BrigOperandBase Helper type. See 19.8.2 BrigOperandBase (p. 296).

BrigOperandAddress Used for [name]. See 19.8.3 BrigOperandAddress (p. 297).

BrigOperandImmed A numeric value. See 19.8.4 BrigOperandImmed (p. 298).

BrigOperandList Used for return and input arguments. See 19.8.5 BrigOperandList (p. 298).

BrigOperandRef A single argument. See 19.8.6 BrigOperandRef (p. 299).

BrigOperandReg A register (c, s, or d). See 19.8.7 BrigOperandReg (p. 300).

BrigOperandRegVector Used for (register, register) or (register, register, register, register). See 19.8.8
BrigOperandRegVector (p. 300).

BrigOperandWavesize The wavesize operand. See 19.8.9 BrigOperandWavesize (p. 300).

19.8.2 BrigOperandBase

The .operand section should not include any items of type BrigOperandBase. The
declaration is only a helper type so that tools processing Brig can use pointers to a
BrigOperandBase as a generic pointer to any operand, which all start with this field
layout.

Syntax is:

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

296 BRIG: HSAIL Binary Format  

struct BrigOperandBase {
 uint16_t size;
 BrigOperandKinds16_t kind;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigOperandKinds16_t kind — Can be any member of the BrigOperandKinds
enumeration. See 19.2.2 Section Structure Kinds (p. 251).

19.8.3 BrigOperandAddress

BrigOperandAddress is used for [name].

Syntax is:
struct BrigOperandAddress {
 uint16_t size;
 BrigOperandKinds16_t kind;
 BrigDirectiveOffset32_t symbol;
 BrigStringOffset32_t reg;
 uint32_t offsetLo;
 uint32_t offsetHi;
 BrigType16_t type;
 uint16_t reserved;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigOperandKinds16_t kind — Must be BRIG_OPERAND_ADDRESS.

• BrigDirectiveOffset32_t symbol — Offset in .directive section pointing to
the symbol directive for the name. If the compilation unit has both a declaration
and a definition, then this must point to the definition, even if it occurs lexically
later than the operation. See 19.6.2 Declarations and Definitions in the Same
Compilation Unit (p. 271).

• BrigStringOffset32_t reg — Byte offset in the.string section to the register
name.

• uint32_t offsetLo — Byte offset to add to the address.

offsetLo is combined with offsetHi to form a 64-bit offset for the address:
offset = (uint64_t(offsetHi) << 32) | uint64_t(offsetLo)

If the address size is 32 bits, then dimHi must be 0.

• uint32_t offsetHi — See above. Must be 0 if type size is 32.

• BrigType16_t type — Must be u32 or u64 depending on the segment of the
operation referencing this operand and the machine model in the version
directive. This is not the compound type of the memory referenced by the
address that is available from the operation's type field. See Table 2–3 (p. 20).

• uint16_t reserved — Must be 0.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 297

19.8.4 BrigOperandImmed

BrigOperandImmed is used for a numeric value.

Syntax is:
struct BrigOperandImmed {
 uint16_t size;
 BrigOperandKinds16_t kind;
 BrigType16_t type;
 uint16_t byteCount;
 uint8_t bytes[1];
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigOperandKinds16_t kind — Must be BRIG_OPERAND_IMMED.

• BrigType16_t type — The compound type of the source operand. See 4.17
Operands (p. 50).

• uint16_t byteCount — The number of bytes in the immediate value. Must
match the byte size of type and can be 1, 2, 4, 8, or 16.

• uint8_t bytes[] — Variable-sized. Must be allocated with (((byteCount +
3) / 4) * 4) elements. Any elements after byteCount - 1 must be 0. The
immediate value is composed of byteCount bytes from bytes, with index 0 being
the least significant bits.

19.8.5 BrigOperandList

BrigOperandList is used for the list of arguments to a function or a list of function
names or function signatures. Lists of function names or function signatures are
needed when the call statement has a list of possible targets.

Syntax is:
struct BrigOperandList {
 uint16_t size;
 BrigOperandKinds16_t kind;
 uint16_t elementCount;
 uint16_t reserved;
 BrigDirectiveOffset32_t elements[1];
};

Fields are:

• uint16_t size — Size of the structure in bytes, including the variable-sized
args list.

• BrigOperandKinds16_t kind — Must be BRIG_OPERAND_ARGUMENT_LIST or
BRIG_OPERAND_FUNCTION_LIST.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

298 BRIG: HSAIL Binary Format  

• uint16_t elementCount — Number of elements in elements. Can be 0.

• uint16_t reserved — Must be 0.

• BrigDirectiveOffset32_t elements[] — Variable-sized array. Must be
allocated with elementCount elements.

If BRIG_OPERAND_ARGUMENT_LIST, must reference BRIG_DIRECTIVE_SYMBOL with
BRIG_SEGMENT_ARG segment.

If BRIG_OPERAND_FUNCTION_LIST, must reference BRIG_DIRECTIVE_FUNCTION
directive. If the compilation unit has both a declaration and a definition of the
function, then this must point to the definition, even if it occurs lexically later
than the operation. See 19.6.2 Declarations and Definitions in the Same
Compilation Unit (p. 271).

19.8.6 BrigOperandRef

BrigOperandRef is used for a label, argument, function, signature, or fbarrier.

Syntax is:
struct BrigOperandRef {
 uint16_t size;
 BrigOperandKinds16_t kind;
 BrigDirectiveOffset32_t ref;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigOperandKinds16_t kind — Must be BRIG_OPERAND_LABEL_REF,
BRIG_OPERAND_ARGUMENT_REF, BRIG_OPERAND_FUNCTION_REF,
BRIG_OPERAND_SIGNATURE_REF, or BRIG_OPERAND_SIGNATURE_FBARRIER.

• BrigDirectiveOffset32_t ref — Byte offset to the place in the .directive
section where the label, argument, function, signature, or fbarrier is declared.

If kind is BRIG_OPERAND_LABEL_REF, must reference a directive with kind of
BRIG_DIRECTIVE_LABEL if the label is for an operation, or
BRIG_DIRECTIVE_LABEL_LIST if the label is for a labeltargets statement. If for
a labeltargets statement, the label field of BrigDirectiveLabelList will
reference the label.

If kind is BRIG_OPERAND_ARGUMENT_REF, must reference a directive with kind of
BRIG_DIRECTIVE_SYMBOL with the BRIG_SEGMENT_ARG segment.

If kind is BRIG_OPERAND_FUNCTION_REF, must reference a directive with kind of
BRIG_DIRECTIVE_FUNCTION. If the compilation unit has both a declaration and a
definition of the function, then this must point to the definition, even if it occurs
lexically later than the operation. See 19.6.2 Declarations and Definitions in the
Same Compilation Unit (p. 271).

If kind is BRIG_OPERAND_SIGNATURE_REF, must reference a directive with kind
of BRIG_DIRECTIVE_FUNCTION or BRIG_DIRECTIVE_SIGNATURE.

If kind is BRIG_OPERAND_SIGNATURE_FBARRIER, must reference a directive with
kind of BRIG_DIRECTIVE_FBARRIER.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 299

19.8.7 BrigOperandReg

BrigOperandReg is used for a register (c, s, or d).

Syntax is:
struct BrigOperandReg {
 uint16_t size;
 BrigOperandKinds16_t kind;
 BrigStringOffset32_t reg;
 BrigType16_t type;
 uint16_t reserved;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigOperandKinds16_t kind — Must be BRIG_OPERAND_REG.

• BrigStringOffset32_t reg — Byte offset to the place in the .string section
where the register name occurs.

• BrigType16_t type — The compound type of the operand. See 4.17 Operands
(p. 50).

• uint16_t reserved — Must be 0.

19.8.8 BrigOperandRegVector

BrigOperandRegVector is used for certain operations to allow vector register forms.

Syntax is:
struct BrigOperandRegVector {
 uint16_t size;
 BrigOperandKinds16_t kind;
 BrigType16_t type;
 uint16_t regCount;
 BrigStringOffset32_t regs[1];
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigOperandKinds16_t kind — Must be BRIG_OPERAND_REG_VECTOR.

• BrigType16_t type — The compound type of each of the registers in the vector
register operand. See 4.17 Operands (p. 50).

• uint16_t regCount — Number of registers. Can be 2, 3, or 4.

• BrigStringOffset32_t regs[] — Variable-sized array. Must be allocated with
regCount elements. Each element is the byte offset in the .string section to the
register name.

19.8.9 BrigOperandWavesize

BrigOperandWavesize is the wavesize operand, which is a compile-time value equal
to the size of a wavefront.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

300 BRIG: HSAIL Binary Format  

Syntax is:
struct BrigOperandWavesize {
 uint16_t size;
 BrigOperandKinds16_t kind;
 BrigType16_t type;
 uint16_t reserved;
};

Fields are:

• uint16_t size — Size of the structure in bytes.

• BrigOperandKinds16_t kind — Must be BRIG_OPERAND_WAVESIZE.

• BrigType16_t type — The compound type of the source operand. See 4.17
Operands (p. 50).

• uint16_t reserved — Must be 0.

19.9 .debug Section
The .debug section must start with a BrigSectionHeader entry. See 19.3 Section
Header (p. 266).

The .debug section contains one or more block sections. See 19.5 Block Sections in
BRIG (p. 267).

19.10 BRIG Syntax for Operations
This section describes the BRIG syntax for operations.

19.10.1 BRIG Syntax for Arithmetic Operations

19.10.1.1 BRIG Syntax for Integer Arithmetic Operations
Table 19–5 BRIG Syntax for Integer Arithmetic Operations

Opcode Format Operand 0 Operand 1 Operand 2

BRIG_OPCODE_ABS BRIG_INST_BASIC if default modifier is used;
otherwise BRIG_INST_MOD

dest src

BRIG_OPCODE_ADD BRIG_INST_BASIC if default modifier is used;
otherwise BRIG_INST_MOD

dest src src

BRIG_OPCODE_BORROW BRIG_INST_BASIC dest src src

BRIG_OPCODE_CARRY BRIG_INST_BASIC dest src src

BRIG_OPCODE_DIV BRIG_INST_BASIC dest src src

BRIG_OPCODE_MAX BRIG_INST_BASIC if default modifier is used;
otherwise BRIG_INST_MOD

dest src src

BRIG_OPCODE_MIN BRIG_INST_BASIC if default modifier is used;
otherwise BRIG_INST_MOD

dest src src

BRIG_OPCODE_MUL BRIG_INST_BASIC if default modifier is used;
otherwise BRIG_INST_MOD

dest src src

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 301

Opcode Format Operand 0 Operand 1 Operand 2

BRIG_OPCODE_MULHI BRIG_INST_BASIC if default modifier is used;
otherwise BRIG_INST_MOD

dest src src

BRIG_OPCODE_NEG BRIG_INST_BASIC if default modifier is used;
otherwise BRIG_INST_MOD

dest src

BRIG_OPCODE_REM BRIG_INST_BASIC dest src src

BRIG_OPCODE_SUB BRIG_INST_BASIC if default modifier is used;
otherwise BRIG_INST_MOD

dest src src

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

19.10.1.2 BRIG Syntax for Integer Optimization Operation
Table 19–6 BRIG Syntax for Integer Optimization Operation

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3

BRIG_OPCODE_MAD BRIG_INST_BASIC dest src src src

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

19.10.1.3 BRIG Syntax for 24-Bit Integer Optimization Operations
Table 19–7 BRIG Syntax for 24-Bit Integer Optimization Operations

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3

BRIG_OPCODE_MAD24 BRIG_INST_BASIC dest src src src

BRIG_OPCODE_MAD24HI BRIG_INST_BASIC dest src src src

BRIG_OPCODE_MUL24 BRIG_INST_BASIC dest src src

BRIG_OPCODE_MUL24HI BRIG_INST_BASIC dest src src

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

19.10.1.4 BRIG Syntax for Integer Shift Operations
Table 19–8 BRIG Syntax for Integer Optimization Operation

Opcode Format Operand 0 Operand 1 Operand 2

BRIG_OPCODE_SHL BRIG_INST_BASIC dest src src

BRIG_OPCODE_SHR

dest: must be BRIG_OPERAND_REG.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

302 BRIG: HSAIL Binary Format  

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

The pack field of BRIG_INST_BASIC should be set to BRIG_PACK_PS for packed source
types and to BRIG_PACK_NONE otherwise.

19.10.1.5 BRIG Syntax for Individual Bit Operations
Table 19–9 BRIG Syntax for Individual Bit Operations

Opcode Format Operand 0 Operand 1 Operand 2

BRIG_OPCODE_AND BRIG_INST_BASIC dest src src

BRIG_OPCODE_NOT BRIG_INST_BASIC dest src

BRIG_OPCODE_OR BRIG_INST_BASIC dest src src

BRIG_OPCODE_POPCOUNT BRIG_INST_SOURCE_TYPE dest src

BRIG_OPCODE_XOR BRIG_INST_BASIC dest src src

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

19.10.1.6 BRIG Syntax for Bit String Operations
Table 19–10 BRIG Syntax for Bit String Operations

Opcode Format Oper. 0 Oper. 1 Oper. 2 Oper. 3 Oper. 4

BRIG_OPCODE_BITEXTRACT BRIG_INST_BASIC dest src src src

BRIG_OPCODE_BITINSERT BRIG_INST_BASIC dest src src src src

BRIG_OPCODE_BITMASK BRIG_INST_BASIC dest src src

BRIG_OPCODE_BITREV BRIG_INST_BASIC dest src

BRIG_OPCODE_BITSELECT BRIG_INST_BASIC dest src src src

BRIG_OPCODE_FIRSTBIT BRIG_INST_SOURCE_TYPE dest src

BRIG_OPCODE_LASTBIT BRIG_INST_SOURCE_TYPE dest src

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

19.10.1.7 BRIG Syntax for Copy (Move) Operations
Table 19–11 BRIG Syntax for Copy (Move) Operations

Opcode Format Operand 0 Operand 1 Operand 2

BRIG_OPCODE_COMBINE BRIG_INST_SOURCE_TYPE dest vector

BRIG_OPCODE_EXPAND BRIG_INST_SOURCE_TYPE vector src

BRIG_OPCODE_LDA BRIG_INST_MEM dest address

BRIG_OPCODE_LDC BRIG_INST_BASIC dest label-or-function

BRIG_OPCODE_MOV BRIG_INST_BASIC dest src

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 303

dest: must be BRIG_OPERAND_REG.

vector: must be BRIG_OPERAND_REG_VECTOR.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

address: must be BRIG_OPERAND_ADDRESS.

label-or-function: must be BRIG_OPERAND_LABELREF or
BRIG_OPERAND_FUNCTION_REF.

19.10.1.8 BRIG Syntax for Packed Data Operations
Table 19–12 BRIG Syntax for Packed Data Operations

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3

BRIG_OPCODE_SHUFFLE BRIG_INST_BASIC dest src src number

BRIG_OPCODE_UNPACKHI BRIG_INST_BASIC dest src src

BRIG_OPCODE_UNPACKLO BRIG_INST_BASIC dest src src

BRIG_OPCODE_PACK BRIG_INST_SOURCE_TYPE dest src src src

BRIG_OPCODE_UNPACK BRIG_INST_SOURCE_TYPE dest src src

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

number: must be BRIG_OPERAND_IMMED.

The pack field of BRIG_INST_BASIC should be set to BRIG_PACK_NONE.

19.10.1.9 BRIG Syntax for Bit Conditional Move (cmov) Operation
Table 19–13 BRIG Syntax for Bit Conditional Move (cmov) Operation

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3

BRIG_OPCODE_CMOV BRIG_INST_BASIC dest src src src

dest: must be BRIG_OPERAND_REG.

src:must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

The pack field of BRIG_INST_BASIC should be set to BRIG_PACK_PP for packed source
types and to BRIG_PACK_NONE otherwise.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

304 BRIG: HSAIL Binary Format  

19.10.1.10 BRIG Syntax for Floating-Point Arithmetic Operations
Table 19–14 BRIG Syntax for Floating-Point Arithmetic Operations

Opcode Format Operand 0 Operand
1

Operand
2

Operand
3

BRIG_OPCODE_ABS BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src

BRIG_OPCODE_ADD BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src src

BRIG_OPCODE_CEIL BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src

BRIG_OPCODE_COPYSIGN BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src src

BRIG_OPCODE_DIV BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src src

BRIG_OPCODE_FLOOR BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src

BRIG_OPCODE_FMA BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src src src

BRIG_OPCODE_FRACT BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src

BRIG_OPCODE_MAX BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src src

BRIG_OPCODE_MIN BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src src

BRIG_OPCODE_MUL BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src src

BRIG_OPCODE_NEG BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 305

Opcode Format Operand 0 Operand
1

Operand
2

Operand
3

BRIG_OPCODE_RINT BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

BRIG_INST_BASIC dest src

BRIG_OPCODE_SQRT BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src

BRIG_OPCODE_SUB BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src src

BRIG_OPCODE_TRUNC BRIG_INST_BASIC if
default modifier is used;
otherwise
BRIG_INST_MOD

dest src

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG or BRIG_OPERAND_IMMED.

19.10.1.11 BRIG Syntax for Floating-Point Classify (class) Operation
Table 19–15 BRIG Syntax for Floating-Point Classify (class) Operation

Opcode Format Operand 0 Operand 1 Operand 2

BRIG_OPCODE_CLASS BRIG_INST_SOURCE_TYPE dest src src

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG or BRIG_OPERAND_IMMED.

19.10.1.12 BRIG Syntax for Floating-Point Native Functions Operations
Table 19–16 BRIG Syntax for Floating-Point Native Functions Operations

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3

BRIG_OPCODE_NCOS BRIG_INST_BASIC dest src

BRIG_OPCODE_NEXP2 dest src

BRIG_OPCODE_NFMA dest src src src

BRIG_OPCODE_NLOG2 dest src

BRIG_OPCODE_NRCP dest src

BRIG_OPCODE_NRSIN dest src

BRIG_OPCODE_NRSQRT dest src

BRIG_OPCODE_NSQRT dest src

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG or BRIG_OPERAND_IMMED.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

306 BRIG: HSAIL Binary Format  

19.10.1.13 BRIG Syntax for Multimedia Operations
Table 19–17 BRIG Syntax for Multimedia Operations

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3

BRIG_OPCODE_BITALIGN BRIG_INST_BASIC dest src src src

BRIG_OPCODE_BYTEALIGN BRIG_INST_BASIC dest src src src

BRIG_OPCODE_LERP BRIG_INST_BASIC dest src src src

BRIG_OPCODE_PACKCVT BRIG_INST_SOURCE_TYPE dest vector

BRIG_OPCODE_UNPACKCVT BRIG_INST_SOURCE_TYPE dest src number

BRIG_OPCODE_SAD BRIG_INST_SOURCE_TYPE dest src src src

BRIG_OPCODE_SADHI BRIG_INST_SOURCE_TYPE dest src src src

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

vector: must be BRIG_OPERAND_REG_VECTOR.

number: must be BRIG_OPERAND_IMMED with value 0, 1, 2, 3, or 4.

19.10.1.14 BRIG Syntax for Segment Checking (segmentp) Operation
Table 19–18 BRIG Syntax for Segment Checking (segmentp) Operation

Opcode Format Operand 0 Operand 1

BRIG_OPCODE_SEGMENTP BRIG_INST_SEG dest src

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG or BRIG_OPERAND_IMMED.

19.10.1.15 BRIG Syntax for Segment Conversion Operations
Table 19–19 BRIG Syntax for Segment Conversion Operations

Opcode Format Operand 0 Operand 1

BRIG_OPCODE_FTOS BRIG_INST_SEG dest src

BRIG_OPCODE_STOF

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG or BRIG_OPERAND_IMMED.

19.10.1.16 BRIG Syntax for Compare (cmp) Operation
Table 19–20 BRIG Syntax for Compare (cmp) Operation

Opcode Format Operand 0 Operand 1 Operand 2

BRIG_OPCODE_CMP BRIG_INST_CMP dest src src

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 307

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

The pack field of BRIG_INST_CMP should be set to BRIG_PACK_PP for packed source
types and to BRIG_PACK_NONE otherwise.

19.10.1.17 BRIG Syntax for Conversion (cvt) Operation
Table 19–21 BRIG Syntax for Conversion (cvt) Operation

Opcode Format Operand 0 Operand 1

BRIG_OPCODE_CVT BRIG_INST_CVT dest src

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

19.10.2 BRIG Syntax for Memory Operations

Table 19–22 BRIG Syntax for Memory Operations

Opcode Format Operand 0 Operand 1 Operand 2 Operand
3

BRIG_OPCODE_LD BRIG_INST_MEM reg-or-
vector

address

BRIG_OPCODE_ST BRIG_INST_MEM reg-or-
vector-
or-num

address

BRIG_OPCODE_ATOMIC BRIG_INST_ATOMIC dest address src

BRIG_OPCODE_ATOMIC (for
atomic_cas)

BRIG_INST_ATOMIC dest address src src

BRIG_OPCODE_ATOMICNORET BRIG_INST_ATOMIC address src

BRIG_OPCODE_ATOMICNORET (for
atomicnoret_cas)

BRIG_INST_ATOMIC address src src

reg-or-vector: must be BRIG_OPERAND_REG or BRIG_OPERAND_REG_VECTOR.

address: must be BRIG_OPERAND_ADDRESS.

reg-or-vector-or-num: must be BRIG_OPERAND_REG, BRIG_OPERAND_REG_VECTOR,
BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

308 BRIG: HSAIL Binary Format  

19.10.3 BRIG Syntax for Image Operations

Table 19–23 BRIG Syntax for Image Operations

Opcode Format Oper. 0 Oper. 1 Oper. 2 Oper.
3

Oper.
4

BRIG_OPCODE_RDIMAGE BRIG_INST_IMAGE 4-
vector-
reg

image sampler reg-
or-
vector

BRIG_OPCODE_LDIMAGE BRIG_INST_IMAGE 4-
vector-
reg

image reg-
or-
vector

BRIG_OPCODE_STIMAGE BRIG_INST_IMAGE 4-
vector-
reg

image reg-
or-
vector

BRIG_OPCODE_ATOMICIMAGE BRIG_INST_ATOMIC_IMAGE dest image reg-
or-
vector

src

BRIG_OPCODE_ATOMICIMAGE

(for atomicimage_cas)

BRIG_INST_ATOMIC_IMAGE dest image reg-
or-
vector

src src

BRIG_OPCODE_ATOMICIMAGENORET BRIG_INST_ATOMIC_IMAGE image reg-
or-
vector

src

BRIG_OPCODE_ATOMICIMAGENORET

(for atomicimagenoret_cas)

BRIG_INST_ATOMIC_IMAGE image reg-
or-
vector

src src

BRIG_OPCODE_QUERYIMAGEWIDTH BRIG_INST_SOURCE_TYPE dest image

BRIG_OPCODE_QUERYIMAGEHEIGHT BRIG_INST_SOURCE_TYPE dest image

BRIG_OPCODE_QUERYIMAGEDEPTH BRIG_INST_SOURCE_TYPE dest image

BRIG_OPCODE_QUERYIMAGEARRAY BRIG_INST_SOURCE_TYPE dest image

BRIG_OPCODE_QUERYIMAGEORDER BRIG_INST_SOURCE_TYPE dest image

BRIG_OPCODE_QUERYIMAGEFORMAT BRIG_INST_SOURCE_TYPE dest image

BRIG_OPCODE_QUERYSAMPLERCOORD BRIG_INST_SOURCE_TYPE dest sampler

BRIG_OPCODE_QUERYSAMPLERFILTER BRIG_INST_SEG dest sampler

4-vector-reg: must be BRIG_OPERAND_REG_VECTOR.

image: must be BRIG_OPERAND_REG.

sampler: must be BRIG_OPERAND_REG.

reg-or-vector: must be BRIG_OPERAND_REG or BRIG_OPERAND_REG_VECTOR.

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

19.10.4 BRIG Syntax for Branch Operations

If the operation is a direct BRIG_OPCODE_BRN or BRIG_OPCODE_CBR operation and
BRIG_OPERAND_LABEL_REF is used, the ref in BrigOperandRef must be to the
BrigDirectiveLabel for the label.

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 309

If the operation is an indirect BRIG_OPCODE_BRN or BRIG_OPCODE_CBR operation and
BRIG_OPERAND_LABEL_REF is used, the ref must be to the BrigDirectiveLabelList
for the labeltargets statement that has the label. The label field of
BrigDirectiveLabelList contains the offset of the BrigDirectiveLabel for the label.

Table 19–24 BRIG Syntax for Branch Operations

Opcode Format Operand 0 Operand 1 Operand 2

BRIG_OPCODE_BRN BRIG_INST_BR label-or-register

BRIG_OPCODE_BRN BRIG_INST_BR dest label-or-address

BRIG_OPCODE_CBR BRIG_INST_BR dest label-or-register

BRIG_OPCODE_CBR BRIG_INST_BR dest dest label-or-address

label-or-register: must be BRIG_OPERAND_LABEL_REF or BRIG_OPERAND_REG.

dest: must be BRIG_OPERAND_REG.

label-or-address: must be BRIG_OPERAND_LABEL_REF or BRIG_OPERAND_ADDRESS.

19.10.5 BRIG Syntax for Parallel Synchronization and Communication
Operations

Table 19–25 BRIG Syntax for Parallel Synchronization and Communication Operations

Opcode Format Operand 0 Operand 1 Operand 2

BRIG_OPCODE_SYNC BRIG_INST_BAR

BRIG_OPCODE_BARRIER BRIG_INST_BAR

BRIG_OPCODEINITFBAR BRIG_INST_FBAR fbarrier-or-reg

BRIG_OPCODE_JOINFBAR BRIG_INST_FBAR fbarrier-or-reg

BRIG_OPCODE_WAITFBAR BRIG_INST_FBAR fbarrier-or-reg

BRIG_OPCODE_ARRIVEFBAR BRIG_INST_FBAR fbarrier-or-reg

BRIG_OPCODE_LEAVEFBAR BRIG_INST_FBAR fbarrier-or-reg

BRIG_OPCODE_RELEASEFBAR BRIG_INST_FBAR fbarrier-or-reg

BRIG_OPCODE_LDF BRIG_INST_BASIC dest fbarrier

BRIG_OPCODE_COUNTLANE BRIG_INST_BASIC dest src

BRIG_OPCODE_COUNTUPLANE BRIG_INST_BASIC dest

BRIG_OPCODE_MASKLANE BRIG_INST_BASIC dest src

BRIG_OPCODE_SENDLANE BRIG_INST_BASIC dest src src

BRIG_OPCODE_RECEIVELANE BRIG_INST_BASIC dest src src

fbarrier-or-reg: must be BRIG_OPERAND_FBARRIER_REF or
BRIG_OPERAND_FBARRIER_REG.

fbarrier: must be BRIG_OPERAND_FBARRIER_REF.

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

310 BRIG: HSAIL Binary Format  

19.10.6 BRIG Syntax for Operations Related to Functions

Table 19–26 BRIG Syntax for Operations Related to Functions

Opcode Format Operand 0 Operand 1 Operand 2 Operand 3 Operand
4

BRIG_OPCODE_RET BRIG_INST_BASIC

BRIG_OPCODE_ALLOCA BRIG_INST_SEG dest src

BRIG_OPCODE_SYSCALL BRIG_INST_BASIC dest number src src src

BRIG_OPCODE_CALL BRIG_INST_BR out-args func-or-
reg

in-args

BRIG_OPCODE_CALL BRIG_INST_BR out-args func-or-
reg

in-args funcs

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

number: must be BRIG_OPERAND_IMMED or BRIG_OPERAND_WAVESIZE.

out-args: output arguments; must be BRIG_OPERAND_ARGUMENT_LIST.

in-args: input arguments; must be BRIG_OPERAND_ARGUMENT_LIST.

func-or-reg: must be BRIG_OPERAND_FUNCTION_REF or BRIG_OPERAND_REG.

funcs: must be BRIG_OPERAND_FUNCTION_LIST.

19.10.7 BRIG Syntax for Special Operations

Table 19–27 BRIG Syntax for Special Operations

Opcode Format Operand 0 Operand 1

BRIG_OPCODE_CLEARDETECTEXCEPT BRIG_INST_BASIC exceptionsNumber

BRIG_OPCODE_CLOCK BRIG_INST_BASIC dest

BRIG_OPCODE_CUID BRIG_INST_BASIC dest

BRIG_OPCODE_CURRENTWORKGROUPSIZE BRIG_INST_BASIC dest dimNumber

BRIG_OPCODE_DEBUGTRAP BRIG_INST_BASIC src

BRIG_OPCODE_DIM BRIG_INST_BASIC dest

BRIG_OPCODE_DISPATCHID BRIG_INST_BASIC dest

BRIG_OPCODE_DISPATCHPTR BRIG_INST_SEG dest

BRIG_OPCODE_GETDETECTEXCEPT BRIG_INST_BASIC dest

BRIG_OPCODE_GRIDGROUPS BRIG_INST_BASIC dest dimNumber

BRIG_OPCODE_GRIDSIZE BRIG_INST_BASIC dest dimNumber

BRIG_OPCODE_LANEID BRIG_INST_BASIC dest

BRIG_OPCODE_MAXCUID BRIG_INST_BASIC dest

BRIG_OPCODE_MAXWAVEID BRIG_INST_BASIC dest

BRIG_OPCODE_NOP BRIG_INST_BASIC

BRIG_OPCODE_NULLPTR BRIG_INST_SEG dest

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  BRIG: HSAIL Binary Format 311

Opcode Format Operand 0 Operand 1

BRIG_OPCODE_QID BRIG_INST_BASIC dest

BRIG_OPCODE_QPTR BRIG_INST_SEG dest

BRIG_OPCODE_SETDETECTEXCEPT BRIG_INST_BASIC exceptionsNumber

BRIG_OPCODE_WAVEID BRIG_INST_BASIC dest

BRIG_OPCODE_WORKGROUPID BRIG_INST_BASIC dest dimNumber

BRIG_OPCODE_WORKGROUPSIZE BRIG_INST_BASIC dest dimNumber

BRIG_OPCODE_WORKITEMABSID BRIG_INST_BASIC dest dimNumber

BRIG_OPCODE_WORKITEMFLATABSID BRIG_INST_BASIC dest

BRIG_OPCODE_WORKITEMFLATID BRIG_INST_BASIC dest

BRIG_OPCODE_WORKITEMID BRIG_INST_BASIC dest dimNumber

dest: must be BRIG_OPERAND_REG.

src: must be BRIG_OPERAND_REG, BRIG_OPERAND_IMMED, or BRIG_OPERAND_WAVESIZE.

dimNumber: must be BRIG_OPERAND_IMMED with the value 0, 1, or 2 corresponding to
the X, Y, and Z dimensions respectively.

exceptionsNumber: must be BRIG_OPERAND_IMMED. bit:0=INVALID_OPERATION, bit:
1=DIVIDE_BY_ZERO, bit:2=OVERFLOW, bit:3=UNDERFLOW, bit:4=INEXACT; all other
bits are ignored.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

312 BRIG: HSAIL Binary Format  

Appendix A

HSAIL Grammar in Extended Backus-Naur
Form (EBNF)

This appendix shows the HSAIL grammar in Extended Backus–Naur Form (EBNF).

Symbol meanings are:

• :== assignment

• [] option

• {} repetition

• | alternative

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Grammar in Extended Backus-Naur Form (EBNF) 313

sequenceOfPrograms ::= program { program }
program ::= version topLevelStatements
topLevelStatements ::= { topLevelStatement } topLevelStatement
topLevelStatement ::= directive
 | TOKEN_COMMENT
 | globalDecl
 | kernel
 | function
globalDecl ::= globalInitializableDecl
 | globalUninitializableDecl
 | declprefix globalImageDecl
 | declprefix globalReadOnlyImageDecl
 | declprefix globalSamplerDecl
 | functionDecl
 | functionSignature
directive ::= pragma
 | extension
 | block
 | control
 | fileDecl
bodyStatements ::= { bodyStatement } bodyStatement
bodyStatement ::= TOKEN_COMMENT
 | block
 | pragma
 | declprefix localInitializableDecl
 | declprefix localUninitializableDecl
 | argblock
 | location
 | label
 | labeltarget
 | operation
bodyStatementNested ::= TOKEN_COMMENT
 | pragma
 | block
 | declprefix initializableDecl
 | declprefix uninitializableDecl
 | location
 | label
 | labeltarget
 | operation
argblock ::= "{" argStatements "}"
argStatements ::= { argStatement } argStatement
argStatement ::= bodyStatementNested
 | declprefix argUninitializableDecl
 | call
operation ::= Instruction0
 | Instruction1
 | Instruction2
 | Instruction3
 | Instruction4
 | cmp
 | mul
 | combine
 | expand
 | mov
 | seg
 | alloca
 | sad
 | packcvt
 | unpackcvt
 | bitextract
 | pack
 | unpack
 | lda
 | ldc
 | imageread
 | ld
 | st
 | cvt
 | atomicRet

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

314 HSAIL Grammar in Extended Backus-Naur Form (EBNF)  

 | atomicNoRet
 | imageAtomicRet
 | imageAtomicNoRet
 | sync
 | bar
 | fbar
 | syscall
 | ret
 | branch
 | query
 | imagestore
 | imageload
sectionitems ::= { sectionitem } sectionitem
block ::= section sectionitems endsection
declprefix ::= [alignment externOrStatic |
 externOrStatic alignment |
 externOrStatic | alignment | const
 alignment externOrStatic | const
 externOrStatic alignment | const
 externOrStatic | const alignment |
 alignment const externOrStatic |
 externOrStatic const alignment |
 externOrStatic const | alignment const |
 alignment externOrStatic const |
 externOrStatic alignment const]
globalSamplerDecl ::= initializableAddress "_Samp"
 TOKEN_GLOBAL_IDENTIFIER
 optArrayDimensions sobInitializer ";"
globalImageDecl ::= initializableAddress "_rwimg"
 TOKEN_GLOBAL_IDENTIFIER
 optArrayDimensions imageInitializer ";"
globalReadOnlyImageDecl ::= initializableAddress "_roimg"
 TOKEN_GLOBAL_IDENTIFIER
 optArrayDimensions imageInitializer ";"
version ::= "version" TOKEN_INTEGER_CONSTANT ":"
 TOKEN_INTEGER_CONSTANT ":"
 profile ":"
 machineModel ";"
profile ::= "$full"
 | "$base"
machineModel ::= "$small"
 | "$large"
addressableOperand ::= "[" nonRegister "]"
nonRegister ::= TOKEN_GLOBAL_IDENTIFIER
 | TOKEN_LOCAL_IDENTIFIER
identifier ::= TOKEN_GLOBAL_IDENTIFIER
 | TOKEN_LOCAL_IDENTIFIER
 | Register
identifierList ::= { identifier "," } identifier
decimalConstant ::= "+" TOKEN_INTEGER_CONSTANT
 | "-" TOKEN_INTEGER_CONSTANT
 | TOKEN_INTEGER_CONSTANT
decimalList ::= { decimalConstant "," } decimalConstant
decimalInitializer ::= "{" decimalList "}"
 | decimalConstant
floatList ::= { TOKEN_DOUBLE_CONSTANT "," }
 TOKEN_DOUBLE_CONSTANT
labelInitializer ::= "{" labelList "}"
floatInitializer ::= "{" floatList "}"
 | TOKEN_DOUBLE_CONSTANT
singleList ::= { TOKEN_SINGLE_CONSTANT "," }
 TOKEN_SINGLE_CONSTANT
singleInitializer ::= "{" singleList "}"
 | TOKEN_SINGLE_CONSTANT
packedConstant ::= dataTypeId "(" decimalList ")"
 | dataTypeId "(" singleList ")"
 | dataTypeId "(" floatList ")"
packedList ::= { packedConstant "," } packedConstant
packedInitializer ::= "{" packedList "}"
 | packedConstant

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Grammar in Extended Backus-Naur Form (EBNF) 315

addressSpaceIdentifier ::= "_readonly"
 | "_kernarg"
 | "_global"
 | "_private"
 | "_arg"
 | "_group"
 | "_spill"
optaddressSpace ::= [addressSpaceIdentifier]
extDataTypeId ::= dataTypeId
 | "_roimg"
 | "_rwimg"
 | "_samp"
vectorToken ::= "_v2"
 | "_v3"
 | "_v4"
alignment ::= "align" TOKEN_INTEGER_CONSTANT
arrayDimensionSet ::= ("[" TOKEN_INTEGER_CONSTANT |
 arrayDimensionSet "["
 TOKEN_INTEGER_CONSTANT | "[") "]"
optArrayDimensions ::= [arrayDimensionSet]
optInitializer ::= ["=" (decimalInitializer |
 floatInitializer | singleInitializer |
 labelInitializer)]
fileDecl ::= "file" TOKEN_INTEGER_CONSTANT
 TOKEN_STRING ";"
argumentDecl ::= declprefix "arg" extDataTypeId
 TOKEN_LOCAL_IDENTIFIER
 optArrayDimensions
kernelArgumentDecl ::= declprefix "kernarg" extDataTypeId
 TOKEN_LOCAL_IDENTIFIER
 optArrayDimensions
argumentListBody ::= [{ argumentDecl "," } argumentDecl]
kernelArgumentListBody ::= [{ kernelArgumentDecl "," }
 kernelArgumentDecl]
argList ::= "(" argumentListBody ")"
returnArgList ::= "(" argumentListBody ")"
kernelArgumentList ::= "(" kernelArgumentListBody ")"
signatureArguments ::= [signatureArgumentList [
 signatureArgumentList]]
twoCallArgs ::= callArgs [callArgs]
functionDefinition ::= declprefix "function"
 TOKEN_GLOBAL_IDENTIFIER returnArgList
 argList
function ::= functionDefinition codeblock
functionDecl ::= declprefix "function"
 TOKEN_GLOBAL_IDENTIFIER returnArgList
 argList ";"
signatureType ::= (alignment "arg" extDataTypeId
 TOKEN_LOCAL_IDENTIFIER | "arg"
 extDataTypeId TOKEN_LOCAL_IDENTIFIER |
 alignment "arg" extDataTypeId | "arg"
 extDataTypeId) optArrayDimensions
signatureTypes ::= { signatureType "," } signatureType
signatureArgumentList ::= "(" (signatureTypes ")" | ")")
functionSignature ::= "signature" TOKEN_GLOBAL_IDENTIFIER
 signatureArguments ";"
section ::= "block" TOKEN_STRING
sectionitem ::= (
 | "blockstring" TOKEN_STRING
 | "blocknumeric" dataTypeId decimalList
 | "blocknumeric" dataTypeId packedList
 | "blocknumeric" dataTypeId singleList
 | "blocknumeric" dataTypeId floatList) ";"
endsection ::= "endblock" ";"
kernelName ::= "kernel" TOKEN_GLOBAL_IDENTIFIER
kernelheader ::= kernelName kernelArgumentList
kernel ::= kernelheader codeblock
codeblockend ::= "}" ";"
codeblock ::= "{" [bodyStatements] codeblockend
labelList ::= { TOKEN_LABEL "," } TOKEN_LABEL

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

316 HSAIL Grammar in Extended Backus-Naur Form (EBNF)  

imageInitializer ::= ["=" "{" imageList "}"]
sobInitializer ::= ["=" "{" soblist "}"]
imageList ::= { imageInit "," } imageInit
soblist ::= { sobInit "," } sobInit
imageInit ::= "format" "=" TOKEN_PROPERTY
 | "order" "=" TOKEN_PROPERTY
 | tobNumeric "=" TOKEN_INTEGER_CONSTANT
sobInit ::= ("coord" | "filter" | "boundaryU" |
 "boundaryV" | "boundaryW") "="
 TOKEN_PROPERTY
globalInitializableDecl ::= declprefix initializableAddress dataTypeId
 TOKEN_GLOBAL_IDENTIFIER optArrayDimensions
 optInitializer ";"
localInitializableDecl ::= initializableAddress dataTypeId
 TOKEN_LOCAL_IDENTIFIER optArrayDimensions
 optInitializer ";"
Register ::= TOKEN_CREGISTER
 | TOKEN_DREGISTER
 | TOKEN_QREGISTER
 | TOKEN_SREGISTER
labeltarget ::= label "labeltargets" labelList ";"
control ::= "enablebreakexceptions" baseOperand ";"
 | "enabledetectexceptions" baseOperand ";"
 | "maxdynamicgroupsize" baseOperand ";"
 | "maxflatgridsize" baseOperand "," baseOperand ","
 baseOperand ";"
 | "maxflatworkgroupsize" baseOperand "," baseOperand ","
 baseOperand ";"
 | "requestedworkgroupspercu" baseOperand ";"
 | "requireddim" baseOperand ";"
 | "requiredgridsize" baseOperand "," baseOperand","
 baseOperand ";"
 | "requiredworkgroupsize " baseOperand "," baseOperand ","
 baseOperand ";"
 | "requirenopartialworkgroups" ";"
pragma ::= "pragma" TOKEN_STRING ";"
extension ::= "extension" TOKEN_STRING ";"
externOrStatic ::= "extern"
 | "static"
const ::= "const"
globalUninitializableAddress ::= "private"
 | "group"
localUninitializableAddress ::= "private"
 | "group"
 | "spill"
initializableAddress ::= "readonly"
 | "global"
globalUninitializableDecl ::= globalUninitializableAddress dataTypeId
 TOKEN_GLOBAL_IDENTIFIER optArrayDimensions ";"
localUninitializableDecl ::= localUninitializableAddress dataTypeId
 TOKEN_LOCAL_IDENTIFIER optArrayDimensions ";"
argUninitializableDecl ::= "arg" dataTypeId identifier
 optArrayDimensions ";"
location ::= "loc" TOKEN_INTEGER_CONSTANT
 TOKEN_INTEGER_CONSTANT
 TOKEN_INTEGER_CONSTANT ";"
label ::= TOKEN_LABEL ":"
baseOperand ::= decimalConstant
 | packedConstant
 | TOKEN_DOUBLE_CONSTANT
 | TOKEN_SINGLE_CONSTANT
 | TOKEN_WAVESIZE
offsetAddressableOperand ::= "[" Register "+" TOKEN_INTEGER_CONSTANT "]"
 | "[" Register "-" TOKEN_INTEGER_CONSTANT "]"
 | "[" Register "]"
 | "[" TOKEN_INTEGER_CONSTANT "]"
operand ::= baseOperand
 | identifier
pairaddressableOperand ::= addressableOperand
 offsetAddressableOperand

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Grammar in Extended Backus-Naur Form (EBNF) 317

memoryOperand ::= addressableOperand
 | offsetAddressableOperand
 | pairaddressableOperand
arrayOperand ::= operand
 | arrayOperandList
arrayOperandList ::= "(" identifierList ")"
Instruction1Opcode ::= "clock"
 | "countuplane"
 | "cuid"
 | "debugtrap"
 | "dim"
 | "dispatchid"
 | "cleardetectexcept"
 | "getdetectexcept"
 | "setdetectexcept"
 | "laneid"
 | "maxcuid"
 | "maxwaveid"
 | "qid"
 | "waveid"
 | "workitemflatabsid"
 | "workitemflatid"
Instruction2Opcode ::= "abs"
 | "bitmask"
 | "bitrev"
 | "countlane"
 | "currentworkgroupsize"
 | "ncos"
 | "neg"
 | "nexp2"
 | "nlog2"
 | "nrcp"
 | "nrsqrt"
 | "nsin"
 | "nsqrt"
 | "gridgroups"
 | "gridsize"
 | "masklane"
 | "mov"
 | "not"
 | "sqrt"
 | "workgroupid"
 | "workgroupsize"
 | "workitemabsid"
 | "workitemid"
Instruction2OpcodeFTZ ::= "ceil"
 | "floor"
 | "fract"
 | "rint"
 | "trunc"
Instruction3Opcode ::= "add"
 | "borrow"
 | "carry"
 | "copysign"
 | "div"
 | "rem"
 | "sub"
 | "shl"
 | "shr"
 | "and"
 | "or"
 | "xor"
 | "unpackhi"
 | "unpacklo"
 | "class"
 | "sendlane"
 | "receivelane"
Instruction3OpcodeFTZ ::= "max"
 | "min"
Instruction4Opcode ::= "fma"

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

318 HSAIL Grammar in Extended Backus-Naur Form (EBNF)  

 | "mad"
 | "bitselect"
 | "bitinsert"
 | "shuffle"
 | "cmov"
 | "bitalign"
 | "bytealign"
 | "lerp"
Instruction4OpcodeFTZ ::= "nfma"
atomicOperationId ::= "_and"
 | "_or"
 | "_xor"
 | "_exch"
 | "_add"
 | "_sub"
 | "_inc"
 | "_dec"
 | "_max"
 | "_min"
comparisonId ::= "_eq"
 | "_ne"
 | "_lt"
 | "_le"
 | "_gt"
 | "_ge"
 | "_equ"
 | "_neu"
 | "_ltu"
 | "_leu"
 | "_gtu"
 | "_geu"
 | "_num"
 | "_nan"
 | "_seq"
 | "_sne"
 | "_slt"
 | "_sle"
 | "_sgt"
 | "_sge"
 | "_snum"
 | "_snan"
 | "_sequ"
 | "_sneu"
 | "_sltu"
 | "_sleu"
 | "_sgtu"
 | "_sgeu"
intRounding ::= "_upi"
 | "_downi"
 | "_zeroi"
 | "_neari"
 | "_upi_sat"
 | "_downi_sat"
 | "_zeroi_sat"
 | "_neari_sat"
floatRounding ::= "_up"
 | "_down"
 | "_zero"
 | "_near"
packing ::= "_pp"
 | "_ps"
 | "_sp"
 | "_ss"
 | "_s"
 | "_p"
 | "_pp_sat"
 | "_ps_sat"
 | "_sp_sat"
 | "_ss_sat"
 | "_s_sat"

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Grammar in Extended Backus-Naur Form (EBNF) 319

 | "_p_sat"
tobNumeric ::= "width"
 | "height"
 | "depth"
dataTypeId ::= "_u32"
 | "_s32"
 | "_s64"
 | "_u64"
 | "_b1"
 | "_b32"
 | "_f64"
 | "_f32"
 | "_b64"
 | "_b8"
 | "_b16"
 | "_s8"
 | "_s16"
 | "_u8"
 | "_u16"
 | "_f16"
 | "_b128"
 | "_u8x4"
 | "_s8x4"
 | "_u16x2"
 | "_s16x2"
 | "_f16x2"
 | "_f32x2"
 | "_u8x8"
 | "_s8x8"
 | "_u16x4"
 | "_s16x4"
 | "_f16x4"
 | "_u8x16"
 | "_s8x16"
 | "_u16x8"
 | "_s16x8"
 | "_f16x8"
 | "_f32x4"
 | "_s32x4"
 | "_u32x4"
 | "_f64x2"
 | "_s64x2"
 | "_u64x2"
optFTZ ::= ["_ftz"]
optRoundingMode ::= [roundingMode]
optPacking ::= [packing]
roundingMode ::= "_ftz"
 | "_ftz" floatRounding
 | floatRounding
 | intRounding
Instruction0 ::= "nop" ";"
Instruction1 ::= ("nullptr" | "dispatchptr" | "qptr")
 optaddressSpace dataTypeId |
 Instruction1Opcode
 optRoundingMode dataTypeId) operand ";"
Instruction2 ::= ("popcount" dataTypeId dataTypeId |
 "firstbit" dataTypeId dataTypeId |
 "lastbit" dataTypeId dataTypeId |
 Instruction2OpcodeFTZ optFTZ optPacking
 dataTypeId | Instruction2Opcode
 optRoundingMode optPacking dataTypeId)
 operand "," operand ";"
syscall ::= "syscall" dataTypeId operand "," baseOperand ","
 operand "," operand "," operand ";"
Instruction3 ::= (Instruction3Opcode optRoundingMode
 optPacking dataTypeId |
 Instruction3OpcodeFTZ optFTZ optPacking
 dataTypeId) operand "," operand ","
 operand ";"
mul ::= ("mul" optRoundingMode optPacking

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

320 HSAIL Grammar in Extended Backus-Naur Form (EBNF)  

 dataTypeId | "mulhi" optPacking
 dataTypeId | "mul24hi" dataTypeId |
 "mul24" dataTypeId | "mad24" dataTypeId
 operand "," | "mad24hi" dataTypeId
 operand ",") operand "," operand ","
 operand ";"
Instruction4 ::= (Instruction4Opcode optRoundingMode |
 Instruction4OpcodeFTZ optFTZ optPacking
) dataTypeId operand "," operand ","
 operand "," operand ";"
packcvt ::= "packcvt" dataTypeId dataTypeId operand ","
 operand "," operand "," operand "," operand ";"
unpackcvt ::= "unpackcvt" dataTypeId dataTypeId operand ","
 operand "," operand ";"
sad ::= ("sad" | "sadhi") dataTypeId dataTypeId
 operand "," operand "," operand "," operand ";"
pack ::= "pack" dataTypeId dataTypeId operand ","
 operand "," operand "," operand ";"
unpack ::= "unpack" dataTypeId dataTypeId operand ","
 operand "," operand ";"
optWidth ::= ["_width" "(" ("all" | TOKEN_WAVESIZE |
 TOKEN_INTEGER_CONSTANT) ")"]
bitextract ::= "bitextract" dataTypeId operand "," operand ","
 operand "," operand "," operand ";"
branchop ::= "cbr" optWidth
branchopbrn ::= "brn" optWidth
branch ::= (branchop operand "," TOKEN_LABEL |
 branchop operand "," identifier |
 branchop operand "," operand "," "["
 identifier "]" | branchop operand ","
 operand "," "[" TOKEN_LABEL "]" |
 branchopbrn identifier | branchopbrn
 TOKEN_LABEL | branchopbrn identifier ","
 "[" identifier "]" | branchopbrn
 identifier "," "[" TOKEN_LABEL "]") ";"
OperandList ::= { operand "," } operand
callArgs ::= "(" (OperandList ")" | ")")
call ::= "call" optWidth operand twoCallArgs
 optCallTargets ";"
optCallTargets ::= [CallTargets]
CallTargets ::= "[" identifierList "]"
 | TOKEN_GLOBAL_IDENTIFIER
optmemSemantic ::= [acqrel | acq]
atomicRet ::= ("atomic" atomicOperationId
 optaddressSpace optmemSemantic
 dataTypeId operand "," memoryOperand |
 "atomic_cas" optaddressSpace
 optmemSemantic dataTypeId operand ","
 memoryOperand "," operand) "," operand
 ";"
atomicNoRet ::= ("atomicnoret" atomicOperationId
 optaddressSpace optmemSemantic
 dataTypeId memoryOperand |
 "atomicnoret_cas" optaddressSpace
 optmemSemantic dataTypeId memoryOperand
 "," operand) "," operand ";"
cvtModifier1 ::= floatRounding
 | "_ftz"
 | "_ftz" floatRounding
 | intRounding
 | "_ftz" intRounding
optcvtModifier ::= [cvtModifier1]
cvt ::= "cvt" optcvtModifier dataTypeId
 dataTypeId operand "," operand ";"
ldModifier ::= { (vectorToken | addressSpaceIdentifier
 | acq | equiv |aligned) }
equiv ::= "_equiv" "(" TOKEN_INTEGER_CONSTANT ")"
acq ::= "_acq"
 | "_part_acq"
 | "_rel"

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Grammar in Extended Backus-Naur Form (EBNF) 321

 | "_part_rel"
acqrel ::= "_ar"
 | "_part_ar"
aligned ::== "aligned"
ldop ::= "ld" optWidth
ld ::= ldop ldModifier dataTypeId arrayOperand
 "," memoryOperand ";"
memFence ::= "_fnone"
 | "_fgroup"
 | "_fglobal"
 | "_fboth"
 | "_fpartial"
 | "_fpartialboth"
optmemFence ::= [memFence]
sync ::= "sync" optmemFence ";"
bar ::= "barrier" optWidth optmemFence ";"
fbar ::= "initfbar" addressSpaceIdentifier operand ";"
 | "joinfbar" optWidth addressSpaceIdentifier
 operand ";"
 | "waitfbar" optWidth optmemFence
 addressSpaceIdentifier operand ";"
 | "arrivefbar" optWidth optmemFence
 addressSpaceIdentifier operand ";"
 | "leavefbar" optWidth addressSpaceIdentifier
 operand ";"
 | "releasefbar" addressSpaceIdentifier operand ";"
stofss ::= "ftos"
 | "stof"
seg ::= ("segmentp" | stofss)
 addressSpaceIdentifier dataTypeId dataTypeId
 operand "," operand ";"
alloca ::= "alloca" addressSpaceIdentifier dataTypeId
 operand "," operand ";"
combine ::= "combine" vectorToken dataTypeId dataTypeId
 operand "," arrayOperandList ";"
expand ::= "expand" vectorToken dataTypeId dataTypeId
 arrayOperandList "," operand ";"
lda ::= "lda" optaddressSpace dataTypeId operand ","
 memoryOperand ";"
ldc ::= "ldc" dataTypeId operand "," (
 TOKEN_LABEL ";" | identifier ";")
ret ::= "ret" ";"
cmp ::= "cmp" comparisonId optFTZ optPacking dataTypeId
 dataTypeId operand "," operand "," operand ";"
st ::= "st" ldModifier dataTypeId arrayOperand
 "," memoryOperand ";"
geometryId ::= "_1d"
 | "_2d"
 | "_3d"
 | "_1db"
 | "_1da"
 | "_2da"
imageread ::= "rdimage" "_v4" geometryId dataTypeId dataTypeId dataTypeId
 arrayOperandList "," operand "," operand "," arrayOperand ";"
imageload ::= "ldimage" "_v4" geometryId dataTypeId dataTypeId dataTypeId
 arrayOperandList "," operand "," arrayOperand ";"
imagestore ::= "stimage" "_v4" geometryId dataTypeId dataTypeId dataTypeId
 arrayOperandList "," operand "," arrayOperand ";"
imageAtomicRet ::= "atomicimage"
 (atomicOperationId
 geometryId dataTypeId dataTypeId dataTypeId
 operand "," operand "," arrayOperand "," operand ";"
 | "_cas"
 geometryId dataTypeId dataTypeId dataTypeId
 operand "," operand "," arrayOperand "," operand ","
 operand ";")
imageAtomicNoRet ::= "atomicimagenoret"
 (atomicOperationId
 geometryId dataTypeId dataTypeId dataTypeId
 operand "," arrayOperand "," operand ";"

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

322 HSAIL Grammar in Extended Backus-Naur Form (EBNF)  

 | "_cas"
 geometryId dataTypeId dataTypeId dataTypeId
 operand "," arrayOperand "," operand "," operand ";")
queryOp ::= "queryimageorder"
 | "queryimageformat"
 | "queryimagearray"
 | "queryimagewidth"
 | "queryimagedepth"
 | "queryimageheight"
 | "querysamplercoord"
 | "querysamplerfilter"
query ::= queryOp dataTypeId operand "," Operand ";

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  HSAIL Grammar in Extended Backus-Naur Form (EBNF) 323

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

324 HSAIL Grammar in Extended Backus-Naur Form (EBNF)  

Appendix B

Limits
This appendix lists the maximum or minimum values that HSA implementations must
support:

• Equivalence classes: Every implementation must support exactly 256 classes.

• Work-group size: Every implementation must support work-group sizes of 256
or larger. The work-group size is the product of the three work-group
dimensions.

• Wavefront size: Every implementation must have a wavefront size that is a
power of 2 in the range from 1 to 64 inclusive.

• Flattened ID (work-item flattened ID, work-item absolute flattened ID, and work-
group flattened ID): Every implementation must support flattened IDs of 232 − 1.

• Number of work-groups: The only limit on the number of work-groups in a
single kernel dispatch is a consequence of the size of the flattened IDs.
Because each flattened ID is guaranteed to fit in 32 bits, the maximum number
of work-groups in a single grid is limited to 232 − 1.

• Grid dimensions: Every implementation must support up to 232 − 1 sizes in each
grid dimension. The product of the three is also limited to 232 − 1.

• Number of fbarriers: Every implementation must support at least 32 fbarriers
per work-group.

• Size of group memory: Every implementation must support at least 32K bytes of
group memory per compute unit for group segment variables. This amount
might be reduced if an implementation uses group memory for the
implementation of other HSAIL features such as fbarriers (see 9.3 Fine-Grain
Barrier (fbar) Operations (p. 182)) and the exception detection operations (see
12.3 Additional Information on DETECT Exception Operations (p. 216)).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Limits 325

• Size of private memory: Every implementation must support at least 64k bytes
of private memory per work-group.

• Image data type support. Every HSAIL implementation must support images as
defined in 7.1 Images in HSAIL (p. 147). Support of images includes the following
limits:

• 3D images: Every implementation must support 3D image sizes up to (8192
x 8192 x 2048).

• 2D images: Every implementation must support 2D image sizes up to (8192
x 8192).

• Number of read images: Every implementation must support at least eight
read-only images.

• Number of read/write images: Every implementation must support at least
one read/write image.

• Number of samplers: Every implementation must support at least eight
samplers.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

326 Limits  

Appendix C

Glossary of HSAIL Terms

acquire synchronizing operation
A memory operation marked with acquire (an ld_acq, atomic_ar, or
atomic_noret_ar operation).

active work-group
A work-group executing in a compute unit.

active work-item
A work-item in an active work-group. At an operation, an active work-item is one
that executes the current operation.

agent
A device that participates in the HSA memory model. Agents can generate and
dispatch AQL packets to HSA components. See 1.1 What Is HSAIL? (p. 1).

AQL
Architected Queuing Language. An AQL packet is an HSA-standard packet format.
AQL dispatch packets are used to dispatch new kernels on the HSA component and
specify the launch dimensions, instruction code, kernel arguments, completion
detection, and more. Other AQL packets may also be supported in the future.

arg segment
A memory segment used to pass arguments into and out of functions. See 2.8.1
Types of Segments (p. 14) and 10.4 Arg Segment (p. 200).

BRIG
The HSAIL binary format. See Chapter 19 BRIG: HSAIL Binary Format (p. 249).

compound type
A type made up of a base data type and a length. See 4.14.1 Base Data Types (p. 46).

compute unit
A piece of virtual hardware capable of executing the HSAIL instruction set. The
work-items of a work-group are executed on the same compute unit. An HSA
component is composed of one or more compute units. See 2.1 Overview of Grids,
Work-Groups, and Work-Items (p. 5).

dispatch
A runtime operation that performs several chores, one of which is to launch a
kernel. See 2.1 Overview of Grids, Work-Groups, and Work-Items (p. 5).

dispatch ID
An identifier for a dispatch operation that is unique for the queue used for the
dispatch. The combination of the dispatch ID and the queue ID is globally unique.

divergent control flow
A situation in which kernels include branches and the execution of different work-
items grouped into a wavefront might not be uniform. See 2.13 Divergent Control
Flow (p. 21).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Glossary of HSAIL Terms 327

external linkage
A condition in which a name of a function or variable in one compilation unit can
refer to (is linked together with) an object with the same name defined in a different
compilation unit. By default, all definitions of names starting with an ampersand
(&) in a compilation unit are visible to other compilation units and have external
linkage. See 4.23.1 External Linkage (p. 60).

fbarrier
A fine-grain barrier that applies to a subset of a work-group. See 9.3 Fine-Grain
Barrier (fbar) Operations (p. 182).

finalizer
A back-end compiler that translates HSAIL code into native ISA for a compute unit.

finalizer extension
An operation specific to a finalizer. Finalizer extensions are specified in the
extension directive and accessed like all HSAIL operations. See 14.1 extension
Directive (p. 225).

flattened absolute ID
The result after a work-group absolute ID or work-item absolute ID is flattened into
one dimension. See 2.3.4 Work-Item Flattened Absolute ID (p. 9).

global segment
A memory segment in which memory is visible to all work-items in all HSA
components and to all host CPUs. See 2.8.1 Types of Segments (p. 14).

grid
A multidimensional, rectangular structure containing work-groups. A grid is
formed when a program launches a kernel. See 1.2 HSAIL Virtual Language (p. 2).

group segment
A memory segment in which memory is visible to a single work-group. See 2.8.1
Types of Segments (p. 14).

host CPU
An agent that also supports the native CPU instruction set and runs the host
operating system and the HSA runtime. As an agent, the host CPU can dispatch
commands to an HSA component using memory operations to construct and
enqueue AQL packets. In some systems, a host CPU can also act as an HSA
component (with appropriate HSAIL finalizer and AQL mechanisms). See 1.1 What
Is HSAIL? (p. 1).

HSA component
An agent that supports the HSAIL instruction set and the AQL packet format. As an
agent, an HSA component can dispatch commands to any HSA component
(including itself) using memory operations to construct and enqueue AQL packets.
An HSA component is composed of one or more compute units. See 1.1 What Is
HSAIL? (p. 1).

HSA implementation
A combination of (1) hardware components that execute one or more machine
instruction set architectures (ISAs), (2) a compiler, linker, and loader, (3) a finalizer
that translates HSAIL code into the appropriate native ISA if the hardware
components cannot support HSAIL natively, and (4) a runtime system.

HSAIL
Heterogeneous System Architecture Intermediate Language. A virtual machine
and a language. The instruction set of the HSA virtual machine that preserves
virtual machine abstractions and allows for inexpensive translation to machine
code.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

328 Glossary of HSAIL Terms  

illegal operation
An operation that a finalizer is allowed (but not required) to complain about.

image object
An object type that describes how a read-only or read-write image is structured.
See 7.1.4 Image Objects (p. 150).

invalid address
Refer to the sections on shared virtual memory and error reporting in the HSA
System Architecture Specification for more information on invalid addresses.

kernarg segment
A memory segment used to pass arguments into a kernel. See 2.8.1 Types of
Segments (p. 14).

kernel
A section of code executed in a data-parallel way by a compute unit. Kernels are
written in HSAIL and then separately translated by a finalizer to the target
instruction set. See 1.1 What Is HSAIL? (p. 1).

lane
An element of a wavefront. The wavefront size is the number of lanes in a
wavefront. Thus, a wavefront with a wavefront size of 64 has 64 lanes. See 2.6
Wavefronts, Lanes, and Wavefront Sizes (p. 11).

natural alignment
Alignment in which a memory operation of size n bytes has an address that is an
integer multiple of n. For example, naturally aligned 8-byte stores can only be to
addresses 0, 8, 16, 24, 32, 40, and so forth. See 4.22 Declaring and Defining Identifiers
(p. 55).

private segment
A memory segment in which memory is visible only to a single work-item. Used
for read-write memory. See 2.8.1 Types of Segments (p. 14).

queue ID
An identifier for a queue in a process. Each queue ID is unique in the process. The
combination of the queue ID and the dispatch ID is globally unique.

read atomicity
A condition of a load such that it must be read in its entirety. A load has read
atomicity of size b if it cannot be read as fragments that are smaller than b bits.

readonly segment
A memory segment for read-only memory. See 2.8.1 Types of Segments (p. 14).

release synchronizing operation
A memory operation marked with release (an st_rel, atomic_ar, or
atomic_noret_ar operation).

sampler object
An object type that describes how a particular read on an image is to be performed.
See 7.1.7 Sampler Objects (p. 156).

segment
A contiguous addressable block of memory. Segments have size, addressability,
access speed, access rights, and level of sharing between work-items. Also called
memory segment. See 2.8 Segments (p. 13).

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  Glossary of HSAIL Terms 329

serial order
A sequential execution of operations such that all effects of each operation appear
to complete before the effects of the next operation. The HSAIL program sequence
uses serial order to order memory accesses (loads, stores, and atomics).

spill segment
A memory segment used to load or store register spills. See 2.8.1 Types of Segments
(p. 14).

static linkage
A condition in which a definition or declaration in one compilation unit is marked
static and is not visible to any other compilation unit. See 4.23.2 Static Linkage (p.
60).

uniform operation
An operation that produces the same result over a set of work-items. The set of
work-items could be the grid, the work-group, the slice of work-items specified by
the width modifier, or the wavefront. See 2.14 Uniform Operations (p. 23).

wavefront
A group of work-items executing on a single instruction pointer. See 2.6
Wavefronts, Lanes, and Wavefront Sizes (p. 11).

wavefront size
An implementation-defined constant, ranging from 1 to 64, specifying the size of a
wavefront. See 2.6.2 Wavefront Size (p. 12).

work-group
A collection of work-items. See 2.2 Work-Groups (p. 7).

work-group ID
The identifier of a work-group expressed in three dimensions. See 2.2.1 Work-
Group ID (p. 7).

work-group flattened ID
The work-group ID flattened into one dimension. See 2.2.2 Work-Group Flattened
ID (p. 8).

work-item
The simplest element of work. See 2.3 Work-Items (p. 8).

work-item absolute ID
The identifier of a work-item (within the grid) expressed in three dimensions. See
2.3.3 Work-Item Absolute ID (p. 9).

work-item flattened ID
The work-item ID flattened into one dimension. See 2.3.2 Work-Item Flattened ID
(p. 9).

work-item flattened absolute ID
The work-item absolute ID flattened into one dimension. See 2.3.4 Work-Item
Flattened Absolute ID (p. 9).

work-item ID
The identifier of a work-item (within the work-group) expressed in three
dimensions. See 2.3.1 Work-Item ID (p. 8).

write atomicity
A condition of a store such that it must be written in its entirety. A store has write
atomicity of size b if it cannot be broken up into fragments that are smaller than b
bits.

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

330 Glossary of HSAIL Terms  

Index

.

.code section 251, 269–273, 275–286

.debug section 227, 249, 267, 269, 301

.directive section 227, 251, 267, 269–272, 274, 275,
279, 284, 297, 299
.operand section 249, 252, 274, 286–296
.string section 250, 266, 267, 269, 270, 272, 273,
275–278, 280–283, 297, 300

A
Architected Queuing Language 2, 6, 213, 214, 217,
327, 328
acquire synchronizing operation 327
active work-group 327
active work-item 10, 19, 327
agent 1, 2, 17, 19, 62, 133, 148, 151, 156, 327, 328
arg segment 16, 17, 19, 38, 134, 198, 200, 206, 327
argument scope 19, 37–39, 52, 57, 58, 197, 198, 201,
272
arithmetic operations 54, 65, 198

B
BREAK 221–223, 230, 247
BRIG binary format 29, 54, 225, 249, 327
Base profile 95, 96, 99, 100, 111, 115, 118, 120, 237,
241–243
base data type 46, 327
block section 268, 269
bpp 154, 155, 166, 167
branch operations 50, 171, 172

C
clock special operation 212, 318
compile-time macro 214
compound type 46, 50–52, 56, 77, 88, 89, 124, 186,
263, 297, 300, 301, 327
compute unit 2, 6, 7, 182, 214, 215, 217, 221, 231,
233, 325, 327–329
control (c) register 40, 77
control directive 6, 216, 221–223, 229–235, 274
control flow 171
control flow divergence 246
currentworkgroupsize special operation 212, 318

D
DETECT 56, 216, 221–223, 231, 248
debugtrap special operation 213, 219, 242, 318
dimension 6–9, 11, 58, 147, 148, 154, 157, 162, 164,
166, 213–215, 217, 233–235, 281, 312, 325, 328, 330

directive 32, 41, 42, 216, 225–227, 229–231, 234,
249, 250, 253, 265, 269–271, 274, 275, 278, 279, 281,
283, 284, 297, 299, 314
dispatch 6, 148, 213, 214, 216, 221, 231, 327
dispatch ID 6, 213, 214, 217, 327, 329
dispatchid special operation 213, 318
divergent control flow 21, 22, 181, 208, 327
divide by zero exception 15, 220, 248
dynamic group memory allocation 176, 184

E
Extended Backus-Naur Form (EBNF) 151
exceptions 15, 95, 96, 99, 100, 103, 115, 120, 126,
130, 213, 216, 219–223, 230, 231, 242, 243, 247, 248

hardware-detected 219
extension directive 35, 225, 328
external linkage 60, 151, 156, 239, 327, 328

F
Full profile 99, 100, 237, 241, 242
file directive 228, 277
finalizer 35, 62, 124, 176, 182, 184, 197, 216, 221,
222, 229, 231–235, 247, 249, 250, 271, 328
finalizer extension 35, 328
fine-grain barrier 7, 182, 184–188, 291, 299, 310,
328
flattened absolute ID 9, 328
ftz modifier 55, 95, 98–100, 103, 242, 243, 294
function declaration 58, 60, 199, 275
function definition 33, 58, 199, 275
function signature 37, 38, 50, 58, 59, 62, 200, 206,
207, 272, 281, 316

G
global segment 3, 14, 15, 17, 19, 53, 84, 122, 179,
180, 209, 214, 217, 328
grid 2, 6, 9, 10, 57, 215, 234, 328, 330
gridgroups special operation 213, 318
gridsize special operation 9, 213, 318
group segment 3, 8, 14, 17, 19, 38, 53, 57, 61, 62,
85, 122, 179, 180, 182, 187, 191, 216, 217, 231, 240,
325, 328

H
HSA component 2, 6, 7, 19, 20, 62, 126, 131, 151,
156, 182, 209, 212, 214, 217, 221, 235, 327, 328
HSA implementation v, 1, 2, 5, 10, 14, 15, 19–22,
37, 40, 72, 95, 103, 111, 120, 122, 126, 142, 172, 179,
180, 182, 183, 201, 208, 210, 216, 219–222, 229, 237,
241, 242, 245, 265, 325, 326, 328

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  331

host CPU 2, 148, 198, 208, 209, 212, 238, 328

I
ISA 1, 6, 62, 285, 328
illegal operation 329
image format 151, 154, 155, 164, 166, 254
image object 148, 150, 151, 153, 169, 329
image operations 126, 131, 147, 148, 153, 154, 166,
180
image order 151, 154, 155, 158
initializer list 173, 177
invalid address 219, 329

K
kernarg segment 15, 61, 62, 121, 329
kernel 2, 5–7, 10, 12, 15, 16, 19, 20, 23, 26, 27, 33,
37–39, 56–58, 61–63, 84, 148, 151, 156, 176, 177,
182, 187, 191, 198, 202, 207–209, 212–216, 221–223,
226, 228–235, 237, 240, 254, 270, 274, 275, 278, 314,
316, 325, 327–329

L
label list 176, 278
labeltargets statement 172, 176, 177, 278, 299
lane 11, 194, 214, 217, 329
laneid special operation 214, 318
library 19, 61, 209, 239, 240
loc directive 228

M
machine model 20, 21, 110, 111, 121, 122, 128, 132,
186, 238, 297
memory fence modifier 179, 181, 256, 292
memory model 1, 327
memory operations 14, 17, 121, 123, 124, 126, 131,
141, 144, 148, 179, 180, 182, 245, 256, 328

N
natural alignment 56, 62, 126, 151, 329
nop special operation 214, 217, 320
nullptr special operation 214, 320

O
operations related to functions 205

P
packed data 40, 46–48, 56, 85, 260
packing control 48, 260, 291, 294
padding bytes 62, 267
partial work-group 7, 8, 213
persistence rules 20

pragma directive 229
private segment 3, 10, 15, 16, 18, 20, 201, 209, 210,
326, 329
profile 2, 21, 103, 237, 241, 242, 260, 284, 315

Q
qid special operation 214, 318
queue ID 6, 213, 214, 217, 327, 329

R
race condition 184, 186, 188, 191
read atomicity 127, 128, 329
readonly segment 16, 19, 56, 151, 156, 329
register pressure 245
release synchronizing operation 329
runtime 2, 19, 61, 208, 209, 230, 328
runtime library 148, 198, 208, 226, 230, 242

S
sampler object 148, 153, 154, 156, 157, 160–162,
169, 261, 280, 309, 329
segment 8, 14–20, 56, 108, 109, 121, 122, 124, 179,
214, 262, 282, 287, 288, 293, 295, 299, 327–330
serial order 329, 330
shared virtual memory 16, 329
shuffle operation 90
small model 20
special operations 8, 211, 219
spill segment 245, 330
static linkage 60, 239, 330

U
uniform operation 330

V
variadic function 202
vector operand 53
version statement 21, 30, 237, 241, 249
virtual machine v, 1, 2, 229, 328

W
WAVESIZE 12, 22, 50, 51, 65, 126, 176, 189–191,
194, 206, 214, 232, 234, 265, 300
wavefront 11, 22, 23, 184, 187, 193, 194, 208, 222,
300, 325, 329, 330
wavefront size 11–13, 21, 22, 176, 182, 214, 232,
234, 246, 265, 325, 329, 330
width modifier 12, 22, 176, 206, 265, 290, 292, 293
work-group 6–10, 14, 17, 19, 22, 61, 126, 179, 180,
182, 186, 190, 208, 216, 221, 231, 232, 273, 325, 326,
328, 330
work-group ID 7, 217, 330

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

332  

work-group absolute ID 17, 328
work-group flattened ID 8, 325, 330
work-item 2, 8, 9, 15, 16, 19, 20, 38, 126, 179, 184,
197, 206, 209, 212–214, 233, 328–330
work-item ID 8, 9, 217, 330
work-item absolute ID 7, 9, 17, 217, 330
work-item flattened ID 9, 330
work-item flattened absolute ID 8, 9, 11, 330
workgroupid special operation 215, 318
workgroupsize special operation 8, 215, 318
workitemid special operation 8, 176, 215, 318
write atomicity 131, 132, 330

  HSA Foundation Proprietary

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013 HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

  333

HSA Foundation Proprietary  
HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming
Model, Compiler Writer’s Guide, and Object Format (BRIG)

PID: 49828 ∙ Rev: Version 0.95  ∙ 1 May 2013

334  

	HSA Programmer’s Reference Manual: HSAIL Virtual ISA and Programming Model, Compiler Writer’s Guide, and Object Format (BRIG)
	Contents
	Figures
	Tables
	Chapter 1 Overview
	What Is HSAIL?
	HSAIL Virtual Language

	Chapter 2 HSAIL Programming Model
	Overview of Grids, Work-Groups, and Work-Items
	Figure 2–1 A Grid and Its Work-Groups and Work-Items

	Work-Groups
	Work-Group ID
	Work-Group Flattened ID

	Work-Items
	Work-Item ID
	Work-Item Flattened ID
	Work-Item Absolute ID
	Work-Item Flattened Absolute ID

	Scalable Data-Parallel Computing
	Active Work-Groups and Active Work-Items
	Wavefronts, Lanes, and Wavefront Sizes
	Example of Contents of a Wavefront
	Table 2–1 Wavefronts 0 Through 6

	Wavefront Size

	Types of Memory
	Segments
	Types of Segments
	Shared Virtual Memory
	Addressing for Segments

	Flat Memory and Agents
	Table 2–2 Flat Memory and Agents
	Persistence Rules

	Small and Large Machine Models
	Table 2–3 Machine Model Address Sizes

	Base and Full Profiles
	Race Conditions
	Divergent Control Flow
	Width Modifier
	Post-Dominator and Immediate Post-Dominator

	Uniform Operations

	Chapter 3 Examples of HSAIL Programs
	Vector Add Translated to HSAIL
	Transpose Translated to HSAIL

	Chapter 4 HSAIL Syntax and Semantics
	Two Formats
	Source Format
	Figure 4–1 Program Syntax Diagram
	Figure 4–2 version Statement
	Figure 4–3 Top-Level Statements

	Code Blocks
	Figure 4–4 Code Block
	Figure 4–5 Code Block End

	Body Statements
	Figure 4–6 Body Statement Syntax Diagram

	Top-Level Statements
	Figure 4–7 Top-Level Statement Syntax Diagram
	Directive
	Figure 4–8 Directive Syntax Diagram

	Comment
	Global Declaration
	Figure 4–9 Global Declaration Syntax Diagram

	Kernel
	Figure 4–10 Kernel Syntax Diagram

	Function
	Figure 4–11 Function Definition Syntax Diagram
	Figure 4–12 declprefix Syntax Diagram

	Operations
	Strings
	Identifiers
	Figure 4–13 Identifier Syntax Diagram
	Figure 4–14 Name Syntax Diagram
	Syntax
	Scope

	Argument Scope
	Storage Duration
	Rounding Modes
	Registers
	Constants
	Figure 4–15 Constant Syntax Diagram
	Integer Constants
	Figure 4–16 Integer Constant Syntax Diagram
	Figure 4–17 Octal Constant Syntax Diagram
	Figure 4–18 Hex Constant Syntax Diagram

	Floating-Point Constants
	Figure 4–19 Floating-Point Single Constant Syntax Diagram
	Figure 4–20 Floating-Point Double Constant Syntax Diagram
	Figure 4–21 hexFloatConstant Syntax Diagram
	Figure 4–22 hexFrac Syntax Diagram
	Figure 4–23 hexExp Syntax Diagram
	Figure 4–24 hexSequence Syntax Diagram

	Packed Constants
	How Text Format Constants Are Converted to Bit String Constants
	Table 4–1 Text Constants and Results of the Conversion

	Data Types
	Base Data Types
	Table 4–2 Base Data Types

	Packed Data
	Table 4–3 Packed Data Types and Possible Lengths

	Opaque Data Types
	Table 4–4 Opaque Data Types

	Packing Controls for Packed Data
	Table 4–5 Packing Controls for Operations With One Source Input
	Table 4–6 Packing Controls for Operations With Two Source Inputs
	Ranges
	Packed Constants
	Examples

	Subword Sizes
	Operands
	Operand Compound Type
	Rules for Source Operand Registers
	Rules for Destination Operand Registers

	Address Expressions
	Vector Operands
	Labels
	Floating-Point Numbers
	Declaring and Defining Identifiers
	Figure 4–25 Initializable Declaration or Definition Syntax Diagram
	Figure 4–26 Uninitializable Declaration or Definition Syntax Diagram
	Array Declarations

	Linkage: External, Static, and None
	External Linkage
	Static Linkage
	None Linkage

	Dynamic Group Memory Allocation
	Kernarg Segment

	Chapter 5 Arithmetic Operations
	Overview of Arithmetic Operations
	Integer Arithmetic Operations
	Syntax
	Table 5–1 Syntax for Integer Arithmetic Operations
	Table 5–2 Syntax for Packed Versions of Integer Arithmetic Operations

	Description
	Examples of Regular (Nonpacked) Operations
	Examples of Packed Operations

	Integer Optimization Operation
	Syntax
	Table 5–3 Syntax for Integer Optimization Operation

	Description
	Examples

	24-Bit Integer Optimization Operations
	Syntax
	Table 5–4 Syntax for 24-Bit Integer Optimization Operations

	Description
	Examples

	Integer Shift Operations
	Syntax
	Table 5–5 Syntax for Integer Shift Operations

	Description for Standard Form
	Description for Packed Form
	Examples

	Individual Bit Operations
	Syntax
	Table 5–6 Syntax for Individual Bit Operations

	Description
	Table 5–7 Inputs and Results for popcount Operation

	Examples

	Bit String Operations
	Syntax
	Table 5–8 Syntax for Bit String Operations

	Description
	Table 5–9 Inputs and Results for firstbit and lastbit Operations

	Examples

	Copy (Move) Operations
	Syntax
	Table 5–10 Syntax for Copy (Move) Operations

	Description
	Additional Information About lda
	Examples

	Packed Data Operations
	Syntax
	Table 5–11 Syntax for Shuffle and Interleave Operations
	Table 5–12 Syntax for Pack and Unpack Operations

	Description
	Controls in src2 for shuffle Operation
	Table 5–13 Bit Selectors for shuffle Operation

	Common Uses for shuffle Operation
	Figure 5–1 Example of Broadcast
	Figure 5–2 Example of Rotate

	Examples of unpacklo and unpackhi Operations
	Figure 5–3 Example of Unpack

	Examples

	Bit Conditional Move (cmov) Operation
	Syntax
	Table 5–14 Syntax for Bit Conditional Move (cmov) Operation

	Description
	Examples

	Floating-Point Arithmetic Operations
	Overview
	Syntax
	Table 5–15 Syntax for Floating-Point Arithmetic Operations
	Table 5–16 Syntax for Packed Versions of Floating-Point Arithmetic Operations

	Description
	Examples of Regular (Nonpacked) Operations
	Examples of Packed Operations

	Floating-Point Classify (class) Operation
	Syntax
	Table 5–17 Syntax for Floating-Point Classify (class) Operation
	Table 5–18 Conditions and Source Bits

	Description
	Examples

	Floating-Point Native Functions Operations
	Syntax
	Table 5–19 Syntax for Floating-Point Native Functions Operations

	Description
	Examples

	Multimedia Operations
	Syntax
	Table 5–20 Syntax for Multimedia Operations

	Description
	Examples

	Segment Checking (segmentp) Operation
	Syntax
	Table 5–21 Syntax for Segment Checking (segmentp) Operation

	Description
	Examples

	Segment Conversion Operations
	Syntax
	Table 5–22 Syntax for Segment Conversion Operations

	Description
	Examples

	Compare (cmp) Operation
	Syntax
	Table 5–23 Syntax for Compare (cmp) Operation
	Table 5–24 Syntax for Packed Version of Compare (cmp) Operation

	Description for cmp Operation
	Examples

	Conversion (cvt) Operation
	Overview
	Table 5–25 Conversion Methods
	Table 5–26 Notation for Conversion Methods

	Syntax
	Table 5–27 Syntax for Conversion (cvt) Operation

	Rules for Rounding for Conversions
	Table 5–28 Rules for Rounding for Conversions

	Description of Integer Rounding Modes
	Description of Floating-Point Rounding Modes
	Examples

	Chapter 6 Memory Operations
	Memory and Addressing
	How Addresses Are Formed
	Memory Hierarchy
	Figure 6–1 Memory Hierarchy

	Alignment
	Equivalence Classes

	Load (ld) Operation
	Syntax
	Table 6–1 Syntax for Load (ld) Operation

	Description
	Additional Information
	Examples

	Store (st) Operation
	Syntax
	Table 6–2 Syntax for Store (st) Operation

	Description
	Additional Information
	Examples

	Atomic Operations: atomic and atomicnoret
	Atomic (atomic) Operations
	Syntax
	Table 6–3 Syntax for Atomic Operations

	Description of Atomic and Atomic No Return Operations
	Examples

	Atomic No Return (atomicnoret) Operations
	Syntax
	Table 6–4 Syntax for Atomic No Return Operations

	Description
	Examples

	Examples of Memory Operations
	Examples Without Synchronization
	Examples Where Reusing an Address Forces Order
	Examples With One-Sided Synchronization
	Examples With Two-Sided Synchronization

	Chapter 7 Image Operations
	Images in HSAIL
	What Are Images?
	How Images Are Described
	Image Geometry
	Image Objects
	Table 7–1 Enumeration for Image Format Properties
	Table 7–2 Enumeration for Image Order Properties

	How Images Are Accessed
	Bits Per Pixel (bpp)
	Table 7–3 Supported Image Orders and Image Formats

	Sampler Objects
	Rules to Process Coordinates
	Image Boundary Modes
	Table 7–4 Image Channel Order and Border Color

	Image Formats and Output Types
	Table 7–5 Image Formats and Output Types

	Read Image (rdimage) Operation
	Syntax
	Table 7–6 Syntax for Read Image Operation

	Description
	Examples

	Load Image (ldimage) Operation
	Syntax
	Table 7–7 Syntax for Load Image Operation

	Description
	Examples

	Store Image (stimage) Operation
	Syntax
	Table 7–8 Syntax for Store Image Operation

	Description
	Examples

	Atomic Image (atomicimage) Operations
	Syntax
	Table 7–9 Syntax for Atomic Image Operations

	Description
	Examples

	Atomic Image No Return (atomicimagenoret) Operations
	Syntax
	Table 7–10 Syntax for Atomic Image No Return Operations

	Description
	Examples

	Query Image and Query Sampler Operations
	Syntax
	Table 7–11 Syntax for Query Image and Query Sampler Operations

	Description
	Examples

	Chapter 8 Branch Operations
	Branches in HSAIL
	Direct Branches
	Indirect Branches

	Direct and Indirect Branch Operations
	Syntax
	Table 8–1 Syntax for Unconditional Direct Branch Operation
	Table 8–2 Syntax for Conditional Direct Branch Operation
	Table 8–3 Syntax for Unconditional Indirect Branch Operation
	Table 8–4 Syntax for Conditional Indirect Branch Operation

	Description
	Examples

	Using the Width Modifier
	Label Targets (labeltargets Statement)

	Chapter 9 Parallel Synchronization and Communication Operations
	Memory Fence Modifier
	barrier Operation
	Syntax
	Table 9–1 Syntax for barrier Operation

	Description
	Examples

	Fine-Grain Barrier (fbar) Operations
	Overview: What Is an Fbarrier?
	Syntax
	Table 9–2 Syntax for fbar Operations

	Description
	Additional Information About Fbarrier Operations
	Pseudocode Examples
	Examples

	Synchronization (sync) Operation
	Syntax
	Table 9–3 Syntax for sync Operation

	Description
	Examples

	Cross-Lane Operations
	Syntax
	Table 9–4 Syntax for Cross-Lane Operations

	Description
	Examples

	Chapter 10 Functions
	Functions in HSAIL
	Example of a Simple Function
	Example of a More Complex Function
	Function Pointers
	Functions That Do Not Return a Result

	Argument Passing Rules
	Function Declarations, Function Definitions, and Function Signatures
	Function Declaration
	Function Definition
	Function Signature

	Arg Segment
	Variadic Functions
	Example of a Variadic Function

	align Field

	Chapter 11 Operations Related to Functions
	call Operation
	Syntax
	Table 11–1 Syntax for call Operation

	Description
	Example

	Return (ret) Operation
	Syntax
	Table 11–2 Syntax for ret Operation

	Description
	Example

	System Call (syscall) Operation
	Syntax
	Table 11–3 Syntax for System Call (syscall) Operation

	Description
	Examples

	Allocate Memory (alloca) Operation
	Syntax
	Table 11–4 Syntax for Allocate Memory (alloca) Operation

	Description
	Example

	Chapter 12 Special Operations
	Syntax
	Table 12–1 Syntax for Special Operations

	Description
	Additional Information on DETECT Exception Operations
	Examples

	Chapter 13 Exceptions
	Kinds of Exceptions
	Hardware Exceptions
	Hardware Exception Policies

	Chapter 14 Directives
	extension Directive
	How to Set Up Finalizer Extensions

	Block Section Directives for Debugging and Runtime Information
	Syntax for a Block Section
	Example of a Block Section for Debug Data
	Using a Block Section for Runtime Information
	Example of a Block Section for Runtime Data

	file Directive
	loc Directive
	pragma Directive
	Control Directives for Low-Level Performance Tuning
	Table 14–1 Control Directives for Low-Level Performance Tuning

	Chapter 15 version Statement
	Syntax of the version Statement
	Examples

	Chapter 16 Libraries
	Library Restrictions
	Library Example

	Chapter 17 Profiles
	What Are Profiles?
	Profile-Specific Requirements
	Full Profile Requirements
	Base Profile Requirements

	Chapter 18 Guidelines for Compiler Writers
	Register Pressure
	Using Lower-Precision Faster Operations
	Functions
	Frequent Rounding Mode Changes
	Wavefront Size
	Unaligned Access
	When to Use Flat Addressing
	Arg Arguments
	Exceptions

	Chapter 19 BRIG: HSAIL Binary Format
	What Is BRIG?
	BRIG Sections
	Format of Entries in the Sections

	Support Types
	Section Offsets
	Section Structure Kinds
	BrigAluModifierMask
	BrigAtomicOperation
	BrigCompareOperation
	BrigControlDirective
	BrigExecutableModifierMask
	BrigImageFormat
	BrigImageGeometry
	BrigImageOrder
	BrigLinkage
	BrigMachineModel
	BrigMemoryFence
	BrigMemoryModifierMask
	BrigMemorySemantic
	BrigOpcode
	BrigPack
	BrigProfile
	BrigRound
	BrigSamplerBoundaryMode
	BrigSamplerCoord
	BrigSamplerFilter
	BrigSamplerModifierMask
	BrigSegment
	BrigSymbolModifierMask
	BrigType
	BrigVersion
	BrigWidth

	Section Header
	.string Section
	Block Sections in BRIG
	Overview
	Table 19–1 Block Section Structures

	BrigBlockEnd
	BrigBlockNumeric
	BrigBlockStart
	BrigBlockString

	.directive Section
	Overview
	Table 19–2 Structures in the .directive Section

	Declarations and Definitions in the Same Compilation Unit
	BrigDirectiveBase
	BrigDirectiveCallableBase
	BrigDirectiveArgScope
	BrigDirectiveComment
	BrigDirectiveControl
	BrigDirectiveExecutable
	BrigDirectiveExtension
	BrigDirectiveFbarrier
	BrigDirectiveFile
	BrigDirectiveImageInit
	BrigDirectiveLabel
	BrigDirectiveLabelList
	BrigDirectiveLoc
	BrigDirectivePragma
	BrigDirectiveSamplerInit
	BrigDirectiveSignature
	BrigDirectiveSymbol
	BrigDirectiveVariableInit
	BrigDirectiveVersion

	.code Section
	Overview
	Table 19–3 Formats of Operations in the .code Section

	BrigInstBase
	BrigInstBasic
	BrigInstAddr
	BrigInstAtomic
	BrigInstAtomicImage
	BrigInstBar
	BrigInstBr
	BrigInstCmp
	BrigInstCvt
	BrigInstFbar
	BrigInstImage
	BrigInstMem
	BrigInstMod
	BrigInstNone
	BrigInstSeg
	BrigInstSourceType

	.operand Section
	Overview
	Table 19–4 Structures in the .operand Section

	BrigOperandBase
	BrigOperandAddress
	BrigOperandImmed
	BrigOperandList
	BrigOperandRef
	BrigOperandReg
	BrigOperandRegVector
	BrigOperandWavesize

	.debug Section
	BRIG Syntax for Operations
	BRIG Syntax for Arithmetic Operations
	BRIG Syntax for Integer Arithmetic Operations
	Table 19–5 BRIG Syntax for Integer Arithmetic Operations

	BRIG Syntax for Integer Optimization Operation
	Table 19–6 BRIG Syntax for Integer Optimization Operation

	BRIG Syntax for 24-Bit Integer Optimization Operations
	Table 19–7 BRIG Syntax for 24-Bit Integer Optimization Operations

	BRIG Syntax for Integer Shift Operations
	Table 19–8 BRIG Syntax for Integer Optimization Operation

	BRIG Syntax for Individual Bit Operations
	Table 19–9 BRIG Syntax for Individual Bit Operations

	BRIG Syntax for Bit String Operations
	Table 19–10 BRIG Syntax for Bit String Operations

	BRIG Syntax for Copy (Move) Operations
	Table 19–11 BRIG Syntax for Copy (Move) Operations

	BRIG Syntax for Packed Data Operations
	Table 19–12 BRIG Syntax for Packed Data Operations

	BRIG Syntax for Bit Conditional Move (cmov) Operation
	Table 19–13 BRIG Syntax for Bit Conditional Move (cmov) Operation

	BRIG Syntax for Floating-Point Arithmetic Operations
	Table 19–14 BRIG Syntax for Floating-Point Arithmetic Operations

	BRIG Syntax for Floating-Point Classify (class) Operation
	Table 19–15 BRIG Syntax for Floating-Point Classify (class) Operation

	BRIG Syntax for Floating-Point Native Functions Operations
	Table 19–16 BRIG Syntax for Floating-Point Native Functions Operations

	BRIG Syntax for Multimedia Operations
	Table 19–17 BRIG Syntax for Multimedia Operations

	BRIG Syntax for Segment Checking (segmentp) Operation
	Table 19–18 BRIG Syntax for Segment Checking (segmentp) Operation

	BRIG Syntax for Segment Conversion Operations
	Table 19–19 BRIG Syntax for Segment Conversion Operations

	BRIG Syntax for Compare (cmp) Operation
	Table 19–20 BRIG Syntax for Compare (cmp) Operation

	BRIG Syntax for Conversion (cvt) Operation
	Table 19–21 BRIG Syntax for Conversion (cvt) Operation

	BRIG Syntax for Memory Operations
	Table 19–22 BRIG Syntax for Memory Operations

	BRIG Syntax for Image Operations
	Table 19–23 BRIG Syntax for Image Operations

	BRIG Syntax for Branch Operations
	Table 19–24 BRIG Syntax for Branch Operations

	BRIG Syntax for Parallel Synchronization and Communication Operations
	Table 19–25 BRIG Syntax for Parallel Synchronization and Communication Operations

	BRIG Syntax for Operations Related to Functions
	Table 19–26 BRIG Syntax for Operations Related to Functions

	BRIG Syntax for Special Operations
	Table 19–27 BRIG Syntax for Special Operations

	Appendix A HSAIL Grammar in Extended Backus-Naur Form (EBNF)
	Appendix B Limits
	Appendix C Glossary of HSAIL Terms
	Index

