
HETEROGENEOUS SYSTEM ARCHITECTURE (HSA)

AND THE

SOFTWARE ECOSYSTEM

MANJU HEGDE, CORPORATE VP, HETEROGENEOUS SOLUTIONS, AMD

CUDA BRINGS PERFORMANCE TO PRO/RESEARCH ON

DISCRETE GPU
A

d
o

p
ti
o

n

 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |

CUDA Announced

CUDA gave developers access to unprecedented performance

Not easy to use …but enough performance-hungry developers willing to endure pain

Low Consumer space adoption … esp. due to lack of cross-platform

150K+ downloads

500+ Apps*

1.5M downloads

1200+ Apps

* <5% Consumer

20+% Professional

70+% Research

OPENCL’S CROSS-PLATFORM APPEAL ON APU/DGPU
A

d
o

p
ti
o

n

 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |

OpenCL 1.0

Announced

Abundant performance + same complexity as CUDA programming

Cross platform resonates with developers (needs per-platform
optimization)

35k+ downloads

11 Llano launch

Apps

300K+ downloads

100+ Apps

OpenCL 1.1

SDK 2.2

THE RUNAWAY SUCCESS OF JAVA

Easy to program

Truly cross platform – Write Once Run Anywhere

Lack of performance efficiency offset by platform capability

A
d

o
p

ti
o

n

 1996 | 1999 | 2002 | 2005 | 2008 | 2011 |

JDK1.0

Java 7
10M+ developers

Milllions of Apps

J2SE 5.0
4.5M developers

Java SE 6
6M developers

You can get developers

to change!

(takes time and strategy)

HSA FOUNDATION : DRIVING FUTURE OF

HETEROGENEOUS COMPUTING

© Copyright 2012 HSA Foundation. All Rights Reserved. 6

Founders

Promoters

Supporters

Contributors

Academic

http://www.apical.co.uk/
http://www.multicorewareinc.com/index.php

Heterogeneous

Systems

GOALS FOR THE HETEROGENEOUS SYSTEM

ARCHITECTURE

DEVELOPER Easier to program

ENDUSER Rich Experiences

 DEVELOPER Improved performance

& power

OSV Improved quality of service

• Advanced Natural User Interfaces &

Presence Capabilities

• Rich Cloud Computing User

Experiences

• Perceptual Computing Experiences

• Bring Hollywood Class Realism to

Real-time Entertainment

© Copyright 2012 HSA Foundation. All Rights Reserved. 8

CPU

GPU

Audio

Processor

Video

Hardware

DSP

Image

Signal

Processing

Fixed

Function

Acctr

Encode

Decode

S
h
a
re

d
 M

e
m

o
ry

C
o
h
e
re

n
c
y,

 U
s
e
r

M
o
d
e
 Q

u
e
u
e
s

GPU compute C++ support

User Mode Scheduling

Fully coherent memory

between CPU & GPU

GPU uses pageable system

memory via CPU pointers

GPU graphics pre-emption

GPU compute context switch

 HSA

ARCHITECTURE

© Copyright 2012 HSA Foundation. All Rights Reserved. 9

CPU

GPU

Audio

Processor

Video

Hardware

DSP

Image

Signal

Processing

Fixed

Function

Acctr

Encode

Decode

S
h
a
re

d
 M

e
m

o
ry

C
o
h
e
re

n
c
y,

 U
s
e
r

M
o
d
e
 Q

u
e
u
e
s

GPU compute C++ support

User Mode Scheduling

Fully coherent memory

between CPU & GPU

GPU uses pageable system

memory via CPU pointers

GPU graphics pre-emption

GPU compute context switch

 HSA

ARCHITECTURE

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

HSA INTERMEDIATE LANGUAGE - HSAIL

 Designed for C99, C++ 2011, Java, Renderscript,

OpenCL, C++ AMP

 HSAIL is a virtual ISA for parallel programs

 Finalized to ISA by a JIT compiler or “Finalizer”

 ISA independent by design for CPU & GPU

 Explicitly parallel

 Designed for data parallel programming

 Support for exceptions, virtual functions,

and other high level language features

 Syscall methods

 GPU code can call directly to system services,

IO, printf, etc

© Copyright 2012 HSA Foundation. All Rights Reserved. 10

OPENCL™ AND HSA

 HSA is an optimized platform architecture for

OpenCL™

 Not an alternative to OpenCL™

 OpenCL™ on HSA will benefit from

 Avoidance of wasteful copies

 Low latency dispatch

 Improved memory model

 Pointers shared between CPU and GPU

 HSA also exposes a lower level programming

interface, for those that want the ultimate in

control and performance

 Optimized libraries may choose the lower

level interface

HETEROGENEOUS COMPUTE DISPATCH

How compute dispatch operates

today in the driver model

How compute dispatch

improves under HSA

TODAY’S COMMAND AND DISPATCH FLOW
Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Hardware

Queue

A GPU

HARDWARE

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

TODAY’S COMMAND AND DISPATCH FLOW

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Hardware

Queue

A

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

GPU

HARDWARE

TODAY’S COMMAND AND DISPATCH FLOW

Hardware

Queue

A

C

B
A B

GPU

HARDWARE

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

TODAY’S COMMAND AND DISPATCH FLOW

Hardware

Queue

A GPU

HARDWARE

C

B
A B

HSA COMMAND AND DISPATCH FLOW

Application

A

Application

B

Application

C

Optional Dispatch

Buffer

GPU

HARDWARE

Hardware Queue

A

A A

Hardware Queue

B

B B

Hardware Queue

C

C C

C

C

 No APIs

 No Soft Queues

 No User Mode Drivers

 No Kernel Mode Transitions

 No Overhead!

 Application codes to the

hardware

 User mode queuing

 Hardware scheduling

 Low dispatch times

GPU to D

D to CPU2 G to GPU

GPU to G

Click 6

CPU2 to F

F to GPU

App to E

E to GPU

B to CPU1

CPU1 to B

C to CPU2

A to CPU1

App to C

App to A

Application / Runtime

COMMAND AND DISPATCH CPU <-> GPU

B A F E D C G

CPU2 CPU1 GPU

Click 4

Click 5 Click 7 Click 8 Click 9

loop 1

Click 9

loop 2

Click 9

loop 3

© Copyright 2012 HSA Foundation. All Rights Reserved. 19

Hardware - APUs, CPUs, GPUs

Driver Stack

Domain Libraries

OpenCL™ 1.x, DX Runtimes,

User Mode Drivers

Graphics Kernel Mode Driver

Apps
Apps

Apps
Apps

Apps
Apps

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

User mode component Kernel mode component Components contributed by third parties

ACCELERATED WORKLOADS
CLIENT AND SERVER EXAMPLES

HAAR Face Detection
CORNERSTONE TECHNOLOGY

FOR COMPUTERVISION

LOOKING FOR FACES IN ALL THE RIGHT

PLACES

Quick HD Calculations

Search square = 21 x 21

Pixels = 1920 x 1080 = 2,073,600

Search squares = 1900 x 1060 = ~2 Million

LOOKING FOR DIFFERENT SIZE FACES –

BY SCALING THE VIDEO FRAME

© Copyright 2012 HSA Foundation. All Rights Reserved. 23

More HD Calculations

70% scaling in H and V

Total Pixels = 4.07 Million

Search squares = 3.8 Million

Feature l

Feature m

Feature p

Feature r

Feature q

HAAR CASCADE STAGES
Feature k

Stage N

Stage N+1

Face still
possible? Yes

No

REJECT
FRAME

© Copyright 2012 HSA Foundation. All Rights Reserved. 24

22 CASCADE STAGES, EARLY OUT

BETWEEN EACH

STAGE 22 STAGE 21 STAGE 2 STAGE 1

NO FACE

FACE
CONFIRMED

Final HD Calculations

Search squares = 3.8 million

Average features per square = 124

Calculations per feature = 100

Calculations per frame = 47 GCalcs

Calculation Rate

30 frames/sec = 1.4TCalcs/second

60 frames/sec = 2.8TCalcs/second

…and this only gets front-facing faces

© Copyright 2012 HSA Foundation. All Rights Reserved. 25

CASCADE DEPTH ANALYSIS

0

5

10

15

20

25

Cascade Depth

20-25

15-20

10-15

5-10

0-5

© Copyright 2012 HSA Foundation. All Rights Reserved. 26

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9-22

T
im

e
 (

m
s
)

“Trinity” A10-4600M (6CU@497Mhz, 4 cores@2700Mhz)

GPU

CPU

PROCESSING TIME/STAGE

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G,

6 compute units, 685MHz; 4GB RAM; Windows 7 (64-bit); OpenCL™ 1.1 (873.1)

Cascade Stage

© Copyright 2012 HSA Foundation. All Rights Reserved. 27

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 22

Im
a
g

e
s
/S

e
c

Number of Cascade Stages on GPU

“Trinity” A10-4600M (6CU@497Mhz, 4 cores@2700Mhz)

CPU

HSA

GPU

PERFORMANCE CPU-VS-GPU

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G,

6 compute units, 685MHz; 4GB RAM; Windows 7 (64-bit); OpenCL™ 1.1 (873.1)

© Copyright 2012 HSA Foundation. All Rights Reserved. 28

HAAR SOLUTION – RUN DIFFERENT

CASCADES ON GPU AND CPU

By seamlessly sharing data between CPU and GPU,

HSA allows the right processor to handle its appropriate

workload

+2.5x

-2.5x

INCREASED

PERFORMANCE
DECREASED ENERGY

PER FRAME

© Copyright 2012 HSA Foundation. All Rights Reserved. 29

ACCELERATING MEMCACHED
CLOUD SERVER WORKLOAD

MEMCACHED

 A Distributed Memory Object Caching System Used in Cloud Servers

 Generally used for short-term storage and caching, handling requests that would

otherwise require database or file system accesses

 Used by Facebook, YouTube, Twitter, Wikipedia, Flickr, and others

 Effectively a large distributed hash table

 Responds to store and get requests received over the network

 Conceptually:

 store(key, object)

 object = get(key)

© Copyright 2012 HSA Foundation. All Rights Reserved. 31

0

1

2

3

4
Key Look Up Performance Execution Breakdown

Data Transfer Execution

100%

80%

60%

40%

20%

0

OFFLOADING MEMCACHED KEY LOOKUP TO

THE GPU

T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M. Aamodt, “Characterizing and Evaluating a Key-Value Store Application on Heterogeneous CPU-GPU Systems,”

Proceedings of the 2012 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS 2012), April 2012.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6189209

Multithreaded CPU Radeon HD 5870 “Trinity” A10-5800K Zacate E-350

© Copyright 2012 HSA Foundation. All Rights Reserved. 32

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6189209

ACCELERATING B+TREE

SEARCHES
CLOUD SERVER WORKLOAD

B+TREE SEARCHES

 B+Trees are a fundamental data structure

 Used to reduce memory & disk access to locate a key

 Can support index- and range-based queries

 Can be updated efficiently

 B+Trees are used by enterprise DB applications

 SQL: SQLite, MySQL, Oracle, and others

 No-SQL: Apache CouchDB, Tokyo Cabinet, and others

 Audio search, video copy detection

© Copyright 2012 HSA Foundation. All Rights Reserved. 34

A simple B+Tree linking the keys 1-7. The

linked list (red) allows rapid in-order traversal.

PARALLEL B+TREE SEARCHES ON HSA

© Copyright 2012 HSA Foundation. All Rights Reserved. 35

By efficiently sharing data between CPU and

GPU, HSA increases performance versus Multi

Threaded CPU, even for tree structures that

reside in host memory.

M. Daga, and M. Nutter, “Exploiting Coarse-Grained Parallelism in B+Tree Searches on an APU”, Accepted at ”Second Workshop on Irregular Applications: Algorithms and Architectures, (IA3)” November 2012.

Platform Size <

1.5 GB

Size

1.5-2.7 GB

Size >

2.7 GB

dGPU
(memory size = 3GB)

✓ ✓ ✗

HSA ✓ ✓ ✓ INCREASED PERFORMANCE

+4x

With HSA, DB can be larger than GPU

memory, and can be shared.

 HSA lets us move compute to data

 Parallel search can move to GPU

 Sequential updates can remain on CPU

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G, 6 compute units, 685MHz; 4GB RAM

ACCELERATING JAVA
GOING BEYOND NATIVE LANGUAGES

JAVA ENABLEMENT BY APARAPI

Developer creates
Java™ source

Source compiled to class files
(bytecode) using standard compiler

Aparapi = Runtime capable of converting Java™ bytecode to OpenCL™

For execution on any

OpenCL™ 1.1+ capable device

OR execute via a thread pool if
OpenCL™ is not available

© Copyright 2012 HSA Foundation. All Rights Reserved. 37

JAVA AND APARAPI HSA ENABLEMENT

ROADMAP

© Copyright 2012 HSA Foundation. All Rights Reserved. 38

HSAIL

HSA-Enabled JVM

Application

HSA GPU HSA CPU

HSA Finalizer

CPU ISA GPU ISA

HSA Runtime

LLVM Optimizer

HSAIL

IR

JVM

Application

APARAPI

HSA GPU HSA CPU

HSA Finalizer

CPU ISA GPU ISA CPU ISA GPU ISA

JVM

Application

APARAPI

GPU CPU

OpenCL™

HSAIL

JVM

Application

APARAPI

HSA GPU HSA CPU

HSA Finalizer

CPU ISA GPU ISA

EASE OF PROGRAMMING
CODE COMPLEXITY VS. PERFORMANCE

Optimized template library routines for common GPU functions

 For OpenCL™ and C++ AMP, across multiple platforms

Programming model interface similar to multicore Task Parallel Runtimes (TBB, ConCRT)

CPU performance as good or better than multicore Task Parallel Runtimes

Excellent performance and power efficiency on HSA Devices

For many applications, single source code base for both CPU and GPU !

Leverage robust Visual Studio C++AMP debug solution

Will appeal to developers not yet on GPU, or porting from CUDA/Thrust

BOLT

0

50

100

150

200

250

300

350

L
O

C

LINES-OF-CODE AND PERFORMANCE FOR

DIFFERENT PROGRAMMING MODELS

Copy-back Algorithm Launch Copy Compile Init Performance

Serial CPU TBB Intrinsics+TBB OpenCL™-C OpenCL™ -C++ C++ AMP HSA Bolt

P
e

rfo
rm

a
n

c
e

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0 Copy-back

Algorithm

Launch

Copy

Compile

Init.

Copy-back

Algorithm

Launch

Copy

Compile

Copy-back

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

(Exemplary ISV “Hessian” Kernel)

AMD A10-5800K APU with Radeon™ HD Graphics – CPU: 4 cores, 3800MHz (4200MHz Turbo); GPU: AMD Radeon HD 7660D, 6 compute units, 800MHz; 4GB RAM.

Software – Windows 7 Professional SP1 (64-bit OS); AMD OpenCL™ 1.2 AMD-APP (937.2); Microsoft Visual Studio 11 Beta

© Copyright 2012 HSA Foundation. All Rights Reserved. 41

RESEARCH TOPICS IN HSA
Category Description Comments

Languages/Compilers Higher-level languages. GPU languages are primitive today. OpenCL is a good expert tool.

Look into domain specific languages (graphics, math). Ex: HSA could have a database

accelerator component

Split compilation model – high level compliers & low level compilers and how to make them

work well together

How to run best on a device with multi ISA’s

Software Run-Time Classic load balancing. Look for new ways to partition algorithms automatically in the runtime.

Simultaneous running of multiple kernels or multiple applications. Quality of service &

virtualization. Scheduling for complex status graphs and scheduling dynamic parallelism

System Architecture • Bandwidth/memory arch (balancing BW with compute)

• Load balancing

• Memory configurations: Stack memory devices will eventually appear and systems will

change around idea of bandwidth. Shared memory stacks – what are the implications?

• TCU/LCU ratios

Hardware Logical split between split function hardware.

• Applying HSA to non-GPU devices (DSPs, FPGAs, etc.)

• Heterogeneous conformance optimization - how to run a program that runs well on all

different HSA platforms and hardware

Memory system design: low cost support for coherency and would give programmers a way to

optimize their use of coherence

Security: looking into securing systems

Efficient synchronization primitives

3D graphics pipes – integration with HSA

SOLUTION

PROBLEM

THE HSA OPPORTUNITY

Developer

Return
(Differentiation in

performance,

reduced power,

features,

time to market)

Developer Investment
(Effort, time, new skills)

Good user
experiences

 Historically, developers program CPUs

 HSA + Libraries =
productivity & performance with low power

Wide range of
differentiated
experiences

~4M
apps

20+M*
CPU

coders

PROBLEM

Significant
niche
value

 Het. systems hard to program

 Not all workloads accelerate

~200
apps

~100K
GPU

coders

Few
100Ks
HSA
apps

Few M
HSA

coders

*IDC

